File size: 1,085 Bytes
1efdb68
 
d82f0ef
1efdb68
 
d4c3cdf
1efdb68
bdb0a05
36808c9
 
 
3cc2009
1efdb68
 
 
 
eb200c8
36808c9
fab2e09
1efdb68
 
b7bc186
1c96ee8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from huggingface_hub import from_pretrained_fastai
import gradio as gr
from icevision.all import *

# repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME"
repo_id = "inigo99/kangaroo-detector"

class_map = ClassMap(['kangaroo'])
model = models.torchvision.faster_rcnn.model(backbone=models.torchvision.faster_rcnn.backbones.resnet18_fpn(pretrained=True),
                                             num_classes=len(class_map))
state_dict = torch.load("fasterRCNNkangaroo.pth")
model.load_state_dict(state_dict)

# Definimos una función que se encarga de llevar a cabo las predicciones
def predict(img):
    #img = PILImage.create(img)
    infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(384),tfms.A.Normalize()])
    pred_dict  = models.torchvision.faster_rcnn.end2end_detect(img, infer_tfms, model.to("cpu"), class_map=class_map, detection_threshold=0.5)
    return pred_dict['img']
    
# Creamos la interfaz y la lanzamos. 
gr.Interface(fn=predict, inputs=gr.inputs.Image(type='filepath'), outputs=gr.outputs.Image(type='pil'), examples=['00001.jpg','00002.jpg']).launch(share=False)