Spaces:
Runtime error
Runtime error
File size: 3,596 Bytes
5195a87 5c37b3d 2fba440 26e83c1 2fba440 5c37b3d 2fba440 5c37b3d 2fba440 5195a87 422853a 5195a87 422853a 5195a87 422853a 5195a87 2fba440 5195a87 2fba440 422853a 2fba440 5195a87 422853a 5195a87 422853a 5195a87 422853a 5195a87 2fba440 5195a87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
import gradio as gr
import os
os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..')
import logging
numba_logger = logging.getLogger('numba')
numba_logger.setLevel(logging.WARNING)
import librosa
import torch
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
import torchcrepe
def resize2d(source, target_len):
source[source<0.001] = np.nan
target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
return np.nan_to_num(target)
def convert_wav_22050_to_f0(path):
audio, sr = torchcrepe.load.audio(path)
tmp = torchcrepe.predict(audio=audio, fmin=50, fmax=550,
sample_rate=22050, model='full',
batch_size=2048, device='cuda:0').numpy()[0]
f0 = np.zeros_like(tmp)
f0[tmp > 0] = tmp[tmp > 0]
return f0
def get_text(text, hps):
text_norm = text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
print(text_norm.shape)
return text_norm
hps = utils.get_hparams_from_file("configs/ljs_base.json")
hps_ms = utils.get_hparams_from_file("configs/vctk_base.json")
net_g_ms = SynthesizerTrn(
len(symbols),
hps_ms.data.filter_length // 2 + 1,
hps_ms.train.segment_size // hps.data.hop_length,
n_speakers=hps_ms.data.n_speakers,
**hps_ms.model)
import numpy as np
hubert = torch.hub.load("bshall/hubert:main", "hubert_soft")
_ = utils.load_checkpoint("G_312000.pth", net_g_ms, None)
def vc_fn(input_audio,vc_transform):
if input_audio is None:
return "You need to upload an audio", None
sampling_rate, audio = input_audio
# print(audio.shape,sampling_rate)
duration = audio.shape[0] / sampling_rate
if duration > 30:
return "Error: Audio is too long", None
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
if sampling_rate != 16000:
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
audio22050 = librosa.resample(audio, orig_sr=16000, target_sr=22050)
f0 = convert_wav_22050_to_f0(audio22050)
source = torch.FloatTensor(audio).unsqueeze(0).unsqueeze(0)
print(source.shape)
with torch.inference_mode():
units = hubert.units(source)
soft = units.squeeze(0).numpy()
print(sampling_rate)
f0 = resize2d(f0, len(soft[:, 0])) * vc_transform
soft[:, 0] = f0 / 10
sid = torch.LongTensor([0])
stn_tst = torch.FloatTensor(soft)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
audio = net_g_ms.infer(x_tst, x_tst_lengths,sid=sid, noise_scale=0.1, noise_scale_w=0.1, length_scale=1)[0][
0, 0].data.float().numpy()
return "Success", (hps.data.sampling_rate, audio)
app = gr.Blocks()
with app:
with gr.Tabs():
with gr.TabItem("Basic"):
vc_input3 = gr.Audio(label="Input Audio (30s limitation)")
vc_transform = gr.Number(label="transform",value=1.0)
vc_submit = gr.Button("Convert", variant="primary")
vc_output1 = gr.Textbox(label="Output Message")
vc_output2 = gr.Audio(label="Output Audio")
vc_submit.click(vc_fn, [ vc_input3,vc_transform], [vc_output1, vc_output2])
app.launch() |