Spaces:
Running
on
Zero
Running
on
Zero
Upload ./post_process_audio.py with huggingface_hub
Browse files- post_process_audio.py +153 -0
post_process_audio.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
import torchaudio
|
5 |
+
import torchaudio.functional as F
|
6 |
+
import torchaudio.transforms as T
|
7 |
+
import re
|
8 |
+
|
9 |
+
def replace_low_freq_with_energy_matched(
|
10 |
+
a_file: str,
|
11 |
+
b_file: str,
|
12 |
+
c_file: str,
|
13 |
+
cutoff_freq: float = 5500.0,
|
14 |
+
eps: float = 1e-10
|
15 |
+
):
|
16 |
+
"""
|
17 |
+
1. Load a_file (16kHz) and b_file (48kHz).
|
18 |
+
2. Resample 'a' to 48kHz if needed.
|
19 |
+
3. Match the low-frequency energy of 'a' to that of 'b'.
|
20 |
+
4. Replace the low-frequency of 'b' with the matched low-frequency of 'a'.
|
21 |
+
5. Save the result to c_file.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
a_file (str): Path to a.mp3 (16kHz).
|
25 |
+
b_file (str): Path to b.mp3 (48kHz).
|
26 |
+
c_file (str): Output path for combined result.
|
27 |
+
cutoff_freq (float): Cutoff frequency for low/highpass filters.
|
28 |
+
eps (float): Small value to avoid division-by-zero.
|
29 |
+
"""
|
30 |
+
|
31 |
+
# ----------------------------------------------------------
|
32 |
+
# 1. Load the two files
|
33 |
+
# ----------------------------------------------------------
|
34 |
+
wave_a, sr_a = torchaudio.load(a_file)
|
35 |
+
wave_b, sr_b = torchaudio.load(b_file)
|
36 |
+
|
37 |
+
# If 'a' doesn't match 'b' sample rate, resample it
|
38 |
+
if sr_a != sr_b:
|
39 |
+
resampler = T.Resample(orig_freq=sr_a, new_freq=sr_b)
|
40 |
+
wave_a = resampler(wave_a)
|
41 |
+
sr_a = sr_b # Now they match
|
42 |
+
|
43 |
+
# ----------------------------------------------------------
|
44 |
+
# 2. Low-pass both signals to isolate low-frequency content
|
45 |
+
# ----------------------------------------------------------
|
46 |
+
wave_a_low = F.lowpass_biquad(
|
47 |
+
wave_a,
|
48 |
+
sample_rate=sr_b,
|
49 |
+
cutoff_freq=cutoff_freq
|
50 |
+
)
|
51 |
+
wave_b_low = F.lowpass_biquad(
|
52 |
+
wave_b,
|
53 |
+
sample_rate=sr_b,
|
54 |
+
cutoff_freq=cutoff_freq
|
55 |
+
)
|
56 |
+
|
57 |
+
# ----------------------------------------------------------
|
58 |
+
# 3. Compute RMS of low-frequency portions
|
59 |
+
# ----------------------------------------------------------
|
60 |
+
# We'll do a simple global RMS (across channels & time)
|
61 |
+
# If you need per-channel matching, handle each channel separately.
|
62 |
+
a_rms = wave_a_low.pow(2).mean().sqrt().item() + eps
|
63 |
+
b_rms = wave_b_low.pow(2).mean().sqrt().item() + eps
|
64 |
+
|
65 |
+
# ----------------------------------------------------------
|
66 |
+
# 4. Scale 'a_low' so its energy matches 'b_low'
|
67 |
+
# ----------------------------------------------------------
|
68 |
+
scale_factor = b_rms / a_rms
|
69 |
+
wave_a_low_matched = wave_a_low * scale_factor
|
70 |
+
|
71 |
+
# ----------------------------------------------------------
|
72 |
+
# 5. High-pass 'b' to isolate high-frequency content
|
73 |
+
# ----------------------------------------------------------
|
74 |
+
wave_b_high = F.highpass_biquad(
|
75 |
+
wave_b,
|
76 |
+
sample_rate=sr_b,
|
77 |
+
cutoff_freq=cutoff_freq
|
78 |
+
)
|
79 |
+
|
80 |
+
# ----------------------------------------------------------
|
81 |
+
# 6. Combine: (scaled a_low) + (b_high)
|
82 |
+
# ----------------------------------------------------------
|
83 |
+
if wave_a_low_matched.size(1)!=wave_b_high.size(1):
|
84 |
+
print(f"Original lengths: a_low={wave_a_low_matched.size()}, b_high={wave_b_high.size()}")
|
85 |
+
min_length = min(wave_a_low_matched.size(1), wave_b_high.size(1))
|
86 |
+
wave_a_low_matched = wave_a_low_matched[:, :min_length]
|
87 |
+
wave_b_high = wave_b_high[:, :min_length]
|
88 |
+
|
89 |
+
print(f"After truncation: a_low={wave_a_low_matched.size()}, b_high={wave_b_high.size()}")
|
90 |
+
print(f"Samples truncated: {max(wave_a_low_matched.size(1), wave_b_high.size(1)) - min_length}")
|
91 |
+
|
92 |
+
wave_combined = wave_a_low_matched + wave_b_high
|
93 |
+
|
94 |
+
# (Optional) Normalize if needed to avoid clipping
|
95 |
+
# wave_combined /= max(wave_combined.abs().max(), 1.0)
|
96 |
+
|
97 |
+
# ----------------------------------------------------------
|
98 |
+
# 7. Save to c.mp3
|
99 |
+
# ----------------------------------------------------------
|
100 |
+
torchaudio.save(c_file, wave_combined, sample_rate=sr_b)
|
101 |
+
|
102 |
+
print(f"Successfully created '{os.path.basename(c_file)}' with matched low-frequency energy.")
|
103 |
+
|
104 |
+
if __name__ == "__main__":
|
105 |
+
stage2_output_dir = sys.argv[1]
|
106 |
+
recons_dir = os.path.join(stage2_output_dir, "recons", "mix")
|
107 |
+
vocoder_dir = os.path.join(stage2_output_dir, "vocoder", "mix")
|
108 |
+
save_dir = os.path.join(stage2_output_dir, "post_process")
|
109 |
+
os.makedirs(save_dir, exist_ok=True)
|
110 |
+
|
111 |
+
# Create dictionaries mapping IDs to filenames
|
112 |
+
recons_files = {}
|
113 |
+
vocoder_files = {}
|
114 |
+
|
115 |
+
pattern = r"mixed_([a-f0-9-]+)_xcodec_16k\.mp3$"
|
116 |
+
|
117 |
+
# Map IDs to filenames for recons/mix
|
118 |
+
for filename in os.listdir(recons_dir):
|
119 |
+
match = re.search(pattern, filename)
|
120 |
+
if match:
|
121 |
+
recons_files[(match.group(1)).lower()] = filename
|
122 |
+
|
123 |
+
print(recons_files)
|
124 |
+
|
125 |
+
pattern = r"__([a-f0-9-]+)\.mp3$"
|
126 |
+
# Map IDs to filenames for vocoder/mix
|
127 |
+
for filename in os.listdir(vocoder_dir):
|
128 |
+
match = re.search(pattern, filename)
|
129 |
+
if match:
|
130 |
+
vocoder_files[(match.group(1)).lower()] = filename
|
131 |
+
|
132 |
+
# Find common IDs
|
133 |
+
common_ids = set(recons_files.keys()) & set(vocoder_files.keys())
|
134 |
+
print(f"Found {len(common_ids)} matching file pairs")
|
135 |
+
|
136 |
+
# Create matched file lists
|
137 |
+
a_list = []
|
138 |
+
b_list = []
|
139 |
+
for id in common_ids:
|
140 |
+
a_list.append(os.path.join(recons_dir, recons_files[id]))
|
141 |
+
b_list.append(os.path.join(vocoder_dir, vocoder_files[id]))
|
142 |
+
|
143 |
+
# Process only matching pairs
|
144 |
+
for a, b in zip(a_list, b_list):
|
145 |
+
if os.path.exists(os.path.join(save_dir, os.path.basename(b))):
|
146 |
+
continue
|
147 |
+
|
148 |
+
replace_low_freq_with_energy_matched(
|
149 |
+
a_file=a, # 16kHz
|
150 |
+
b_file=b, # 48kHz
|
151 |
+
c_file=os.path.join(save_dir, os.path.basename(b)),
|
152 |
+
cutoff_freq=5500.0
|
153 |
+
)
|