Spaces:
Running
on
Zero
Running
on
Zero
Upload 6 files
Browse files- codecmanipulator.py +203 -0
- infer.py +456 -0
- mm_tokenizer_v0.2_hf/tokenizer.model +3 -0
- mmtokenizer.py +367 -0
- prompt_examples/genre.txt +1 -0
- prompt_examples/lyrics.txt +39 -0
codecmanipulator.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import numpy as np
|
3 |
+
import einops
|
4 |
+
|
5 |
+
|
6 |
+
class CodecManipulator(object):
|
7 |
+
r"""
|
8 |
+
**mm tokenizer v0.1**
|
9 |
+
see codeclm/hf/mm_tokenizer_v0.1_hf/id2vocab.json
|
10 |
+
|
11 |
+
text tokens:
|
12 |
+
llama tokenizer 0~31999
|
13 |
+
|
14 |
+
special tokens: "32000": "<EOD>", "32001": "<SOA>", "32002": "<EOA>", "32003": "<SOI>", "32004": "<EOI>", "32005": "<SOV>", "32006": "<EOV>", "32007": "<s_local>", "32008": "<e_local>", "32009": "<s_global>", "32010": "<e_global>", "32011": "<semantic>", "32012": "<acoustic>", "32013": "<low_level>", "32014": "<dac_16k>", "32015": "<dac_44k>", "32016": "<xcodec>", "32017": "<placeholder>", "32018": "<semantic_mert>", "32019": "<semantic_hubert>", "32020": "<visual>", "32021": "<semanticodec>"
|
15 |
+
|
16 |
+
mm tokens:
|
17 |
+
dac_16k: 4 codebook, 1024 vocab, 32022 - 36117
|
18 |
+
dac_44k: 9 codebook, 1024 vocab, 36118 - 45333
|
19 |
+
xcodec: 12 codebook, 1024 vocab, 45334 - 57621
|
20 |
+
semantic mert: 1024, 57622 - 58645
|
21 |
+
semantic hubert: 512, 58646 - 59157
|
22 |
+
visual: 64000, not included in v0.1
|
23 |
+
semanticodec 100tps 16384: semantic=16384, 59158 - 75541, acoustic=8192, 75542 - 83733
|
24 |
+
"""
|
25 |
+
def __init__(self, codec_type, quantizer_begin=None, n_quantizer=None, teacher_forcing=False, data_feature="codec"):
|
26 |
+
self.codec_type = codec_type
|
27 |
+
self.mm_v0_2_cfg = {
|
28 |
+
"dac16k": {"codebook_size": 1024, "num_codebooks": 4, "global_offset": 32022, "sep": ["<dac_16k>"], "fps": 50},
|
29 |
+
"dac44k": {"codebook_size": 1024, "num_codebooks": 9, "global_offset": 36118, "sep": ["<dac_44k>"]},
|
30 |
+
"xcodec": {"codebook_size": 1024, "num_codebooks": 12, "global_offset": 45334, "sep": ["<xcodec>"], "fps": 50},
|
31 |
+
"mert": {"codebook_size": 1024, "global_offset": 57622, "sep": ["<semantic_mert>"]},
|
32 |
+
"hubert": {"codebook_size": 512, "global_offset": 58646, "sep": ["<semantic_hubert>"]},
|
33 |
+
"semantic/s": {"codebook_size": 16384, "num_codebooks": 1, "global_offset": 59158, "sep": ["<semanticodec>", "<semantic>"]},
|
34 |
+
"semantic/a": {"codebook_size": 8192, "num_codebooks": 1, "global_offset": 75542, "sep": ["<semanticodec>", "<acoustic>"]},
|
35 |
+
"semanticodec": {"codebook_size": [16384, 8192], "num_codebooks": 2, "global_offset": 59158, "sep": ["<semanticodec>"], "fps": 50},
|
36 |
+
"special_tokens": {
|
37 |
+
'<EOD>': 32000, '<SOA>': 32001, '<EOA>': 32002, '<SOI>': 32003, '<EOI>': 32004, '<SOV>': 32005, '<EOV>': 32006, '<s_local>': 32007, '<e_local>': 32008, '<s_global>': 32009, '<e_global>': 32010, '<semantic>': 32011, '<acoustic>': 32012, '<stage_1>': 32013, '<dac_16k>': 32014, '<dac_44k>': 32015, '<xcodec>': 32016, '<stage_2>': 32017, '<semantic_mert>': 32018, '<semantic_hubert>': 32019, '<visual>': 32020, '<semanticodec>': 32021
|
38 |
+
},
|
39 |
+
"metadata": {
|
40 |
+
"len": 83734,
|
41 |
+
"text_range": [0, 31999],
|
42 |
+
"special_range": [32000, 32021],
|
43 |
+
"mm_range": [32022, 83733]
|
44 |
+
},
|
45 |
+
"codec_range": {
|
46 |
+
"dac16k": [32022, 36117],
|
47 |
+
"dac44k": [36118, 45333],
|
48 |
+
"xcodec": [45334, 57621],
|
49 |
+
# "hifi16k": [53526, 57621],
|
50 |
+
"mert": [57622, 58645],
|
51 |
+
"hubert": [58646, 59157],
|
52 |
+
"semantic/s": [59158, 75541],
|
53 |
+
"semantic/a": [75542, 83733],
|
54 |
+
"semanticodec": [59158, 83733]
|
55 |
+
}
|
56 |
+
}
|
57 |
+
self.sep = self.mm_v0_2_cfg[self.codec_type]["sep"]
|
58 |
+
self.sep_ids = [self.mm_v0_2_cfg["special_tokens"][s] for s in self.sep]
|
59 |
+
self.codebook_size = self.mm_v0_2_cfg[self.codec_type]["codebook_size"]
|
60 |
+
self.num_codebooks = self.mm_v0_2_cfg[self.codec_type]["num_codebooks"]
|
61 |
+
self.global_offset = self.mm_v0_2_cfg[self.codec_type]["global_offset"]
|
62 |
+
self.fps = self.mm_v0_2_cfg[self.codec_type]["fps"] if "fps" in self.mm_v0_2_cfg[self.codec_type] else None
|
63 |
+
|
64 |
+
self.quantizer_begin = quantizer_begin if quantizer_begin is not None else 0
|
65 |
+
self.n_quantizer = n_quantizer if n_quantizer is not None else self.num_codebooks
|
66 |
+
self.teacher_forcing = teacher_forcing
|
67 |
+
self.data_feature = data_feature
|
68 |
+
|
69 |
+
|
70 |
+
def offset_tok_ids(self, x, global_offset=0, codebook_size=2048, num_codebooks=4):
|
71 |
+
"""
|
72 |
+
x: (K, T)
|
73 |
+
"""
|
74 |
+
if isinstance(codebook_size, int):
|
75 |
+
assert x.max() < codebook_size, f"max(x)={x.max()}, codebook_size={codebook_size}"
|
76 |
+
elif isinstance(codebook_size, list):
|
77 |
+
for i, cs in enumerate(codebook_size):
|
78 |
+
assert x[i].max() < cs, f"max(x)={x[i].max()}, codebook_size={cs}, layer_id={i}"
|
79 |
+
else:
|
80 |
+
raise ValueError(f"codebook_size={codebook_size}")
|
81 |
+
assert x.min() >= 0, f"min(x)={x.min()}"
|
82 |
+
assert x.shape[0] == num_codebooks or x.shape[0] == self.n_quantizer, \
|
83 |
+
f"x.shape[0]={x.shape[0]}, num_codebooks={num_codebooks}, n_quantizer={self.n_quantizer}"
|
84 |
+
|
85 |
+
_x = x.copy()
|
86 |
+
_x = _x.astype(np.uint32)
|
87 |
+
cum_offset = 0
|
88 |
+
quantizer_begin = self.quantizer_begin
|
89 |
+
quantizer_end = quantizer_begin+self.n_quantizer
|
90 |
+
for k in range(self.quantizer_begin, quantizer_end): # k: quantizer_begin to quantizer_end - 1
|
91 |
+
if isinstance(codebook_size, int):
|
92 |
+
_x[k] += global_offset + k * codebook_size
|
93 |
+
elif isinstance(codebook_size, list):
|
94 |
+
_x[k] += global_offset + cum_offset
|
95 |
+
cum_offset += codebook_size[k]
|
96 |
+
else:
|
97 |
+
raise ValueError(f"codebook_size={codebook_size}")
|
98 |
+
return _x[quantizer_begin:quantizer_end]
|
99 |
+
|
100 |
+
def unoffset_tok_ids(self, x, global_offset=0, codebook_size=2048, num_codebooks=4):
|
101 |
+
"""
|
102 |
+
x: (K, T)
|
103 |
+
"""
|
104 |
+
if isinstance(codebook_size, int):
|
105 |
+
assert x.max() < global_offset + codebook_size * num_codebooks, f"max(x)={x.max()}, codebook_size={codebook_size}"
|
106 |
+
elif isinstance(codebook_size, list):
|
107 |
+
assert x.max() < global_offset + sum(codebook_size), f"max(x)={x.max()}, codebook_size={codebook_size}"
|
108 |
+
assert x.min() >= global_offset, f"min(x)={x.min()}, global_offset={global_offset}"
|
109 |
+
assert x.shape[0] == num_codebooks or x.shape[0] == self.n_quantizer, \
|
110 |
+
f"x.shape[0]={x.shape[0]}, num_codebooks={num_codebooks}, n_quantizer={self.n_quantizer}"
|
111 |
+
|
112 |
+
_x = x.copy()
|
113 |
+
_x = _x.astype(np.uint32)
|
114 |
+
cum_offset = 0
|
115 |
+
quantizer_begin = self.quantizer_begin
|
116 |
+
quantizer_end = quantizer_begin+self.n_quantizer
|
117 |
+
for k in range(quantizer_begin, quantizer_end):
|
118 |
+
if isinstance(codebook_size, int):
|
119 |
+
_x[k-quantizer_begin] -= global_offset + k * codebook_size
|
120 |
+
elif isinstance(codebook_size, list):
|
121 |
+
_x[k-quantizer_begin] -= global_offset + cum_offset
|
122 |
+
cum_offset += codebook_size[k]
|
123 |
+
else:
|
124 |
+
raise ValueError(f"codebook_size={codebook_size}")
|
125 |
+
return _x
|
126 |
+
|
127 |
+
def flatten(self, x):
|
128 |
+
if len(x.shape) > 2:
|
129 |
+
x = x.squeeze()
|
130 |
+
assert x.shape[0] == self.num_codebooks or x.shape[0] == self.n_quantizer, \
|
131 |
+
f"x.shape[0]={x.shape[0]}, num_codebooks={self.num_codebooks}, n_quantizer={self.n_quantizer}"
|
132 |
+
return einops.rearrange(x, 'K T -> (T K)')
|
133 |
+
|
134 |
+
def unflatten(self, x, n_quantizer=None):
|
135 |
+
x = x.squeeze()
|
136 |
+
assert len(x.shape) == 1
|
137 |
+
assert x.shape[0] % self.num_codebooks == 0 or x.shape[0] % self.n_quantizer == 0, \
|
138 |
+
f"x.shape[0]={x.shape[0]}, num_codebooks={self.num_codebooks}, n_quantizer={self.n_quantizer}"
|
139 |
+
if n_quantizer!=self.num_codebooks:
|
140 |
+
return einops.rearrange(x, '(T K) -> K T', K=n_quantizer)
|
141 |
+
return einops.rearrange(x, '(T K) -> K T', K=self.num_codebooks)
|
142 |
+
|
143 |
+
# def check_codec_type_from_path(self, path):
|
144 |
+
# if self.codec_type == "hifi16k":
|
145 |
+
# assert "academicodec_hifi_16k_320d_large_uni" in path
|
146 |
+
|
147 |
+
def get_codec_type_from_range(self, ids):
|
148 |
+
ids_range = [ids.min(), ids.max()]
|
149 |
+
codec_range = self.mm_v0_2_cfg["codec_range"]
|
150 |
+
for codec_type, r in codec_range.items():
|
151 |
+
if ids_range[0] >= r[0] and ids_range[1] <= r[1]:
|
152 |
+
return codec_type
|
153 |
+
raise ValueError(f"ids_range={ids_range}, codec_range={codec_range}")
|
154 |
+
|
155 |
+
def npy2ids(self, npy):
|
156 |
+
if isinstance(npy, str):
|
157 |
+
data = np.load(npy)
|
158 |
+
elif isinstance(npy, np.ndarray):
|
159 |
+
data = npy
|
160 |
+
else:
|
161 |
+
raise ValueError(f"not supported type: {type(npy)}")
|
162 |
+
# data = data.squeeze()
|
163 |
+
|
164 |
+
assert len(data.shape)==2, f'data shape: {data.shape} is not (n_codebook, seq_len)'
|
165 |
+
data = self.offset_tok_ids(
|
166 |
+
data,
|
167 |
+
global_offset=self.global_offset,
|
168 |
+
codebook_size=self.codebook_size,
|
169 |
+
num_codebooks=self.num_codebooks,
|
170 |
+
)
|
171 |
+
data = self.flatten(data)
|
172 |
+
codec_range = self.get_codec_type_from_range(data)
|
173 |
+
assert codec_range == self.codec_type, f"get_codec_type_from_range(data)={codec_range}, self.codec_type={self.codec_type}"
|
174 |
+
data = data.tolist()
|
175 |
+
return data
|
176 |
+
|
177 |
+
def ids2npy(self, token_ids):
|
178 |
+
# make sure token_ids starts with codebook 0
|
179 |
+
if isinstance(self.codebook_size, int):
|
180 |
+
codebook_0_range = (self.global_offset + self.quantizer_begin*self.codebook_size, self.global_offset + (self.quantizer_begin+1)*self.codebook_size)
|
181 |
+
elif isinstance(self.codebook_size, list):
|
182 |
+
codebook_0_range = (self.global_offset, self.global_offset + self.codebook_size[0])
|
183 |
+
assert token_ids[0] >= codebook_0_range[0] \
|
184 |
+
and token_ids[0] < codebook_0_range[1], f"token_ids[0]={token_ids[self.quantizer_begin]}, codebook_0_range={codebook_0_range}"
|
185 |
+
data = np.array(token_ids)
|
186 |
+
data = self.unflatten(data, n_quantizer=self.n_quantizer)
|
187 |
+
data = self.unoffset_tok_ids(
|
188 |
+
data,
|
189 |
+
global_offset=self.global_offset,
|
190 |
+
codebook_size=self.codebook_size,
|
191 |
+
num_codebooks=self.num_codebooks,
|
192 |
+
)
|
193 |
+
return data
|
194 |
+
|
195 |
+
def npy_to_json_str(self, npy_path):
|
196 |
+
data = self.npy2ids(npy_path)
|
197 |
+
return json.dumps({"text": data, "src": npy_path, "codec": self.codec_type})
|
198 |
+
|
199 |
+
def sep(self):
|
200 |
+
return ''.join(self.sep)
|
201 |
+
|
202 |
+
def sep_ids(self):
|
203 |
+
return self.sep_ids
|
infer.py
ADDED
@@ -0,0 +1,456 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
|
4 |
+
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
|
5 |
+
import argparse
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
import json
|
9 |
+
from omegaconf import OmegaConf
|
10 |
+
import torchaudio
|
11 |
+
from torchaudio.transforms import Resample
|
12 |
+
import soundfile as sf
|
13 |
+
|
14 |
+
import uuid
|
15 |
+
from tqdm import tqdm
|
16 |
+
from einops import rearrange
|
17 |
+
from codecmanipulator import CodecManipulator
|
18 |
+
from mmtokenizer import _MMSentencePieceTokenizer
|
19 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
|
20 |
+
import glob
|
21 |
+
import time
|
22 |
+
import copy
|
23 |
+
from collections import Counter
|
24 |
+
from models.soundstream_hubert_new import SoundStream
|
25 |
+
from vocoder import build_codec_model, process_audio
|
26 |
+
from post_process_audio import replace_low_freq_with_energy_matched
|
27 |
+
import re
|
28 |
+
|
29 |
+
|
30 |
+
parser = argparse.ArgumentParser()
|
31 |
+
# Model Configuration:
|
32 |
+
parser.add_argument("--stage1_model", type=str, default="m-a-p/YuE-s1-7B-anneal-en-cot", help="The model checkpoint path or identifier for the Stage 1 model.")
|
33 |
+
parser.add_argument("--stage2_model", type=str, default="m-a-p/YuE-s2-1B-general", help="The model checkpoint path or identifier for the Stage 2 model.")
|
34 |
+
parser.add_argument("--max_new_tokens", type=int, default=3000, help="The maximum number of new tokens to generate in one pass during text generation.")
|
35 |
+
parser.add_argument("--run_n_segments", type=int, default=2, help="The number of segments to process during the generation.")
|
36 |
+
parser.add_argument("--stage2_batch_size", type=int, default=4, help="The batch size used in Stage 2 inference.")
|
37 |
+
# Prompt
|
38 |
+
parser.add_argument("--genre_txt", type=str, required=True, help="The file path to a text file containing genre tags that describe the musical style or characteristics (e.g., instrumental, genre, mood, vocal timbre, vocal gender). This is used as part of the generation prompt.")
|
39 |
+
parser.add_argument("--lyrics_txt", type=str, required=True, help="The file path to a text file containing the lyrics for the music generation. These lyrics will be processed and split into structured segments to guide the generation process.")
|
40 |
+
parser.add_argument("--use_audio_prompt", action="store_true", help="If set, the model will use an audio file as a prompt during generation. The audio file should be specified using --audio_prompt_path.")
|
41 |
+
parser.add_argument("--audio_prompt_path", type=str, default="", help="The file path to an audio file to use as a reference prompt when --use_audio_prompt is enabled.")
|
42 |
+
parser.add_argument("--prompt_start_time", type=float, default=0.0, help="The start time in seconds to extract the audio prompt from the given audio file.")
|
43 |
+
parser.add_argument("--prompt_end_time", type=float, default=30.0, help="The end time in seconds to extract the audio prompt from the given audio file.")
|
44 |
+
# Output
|
45 |
+
parser.add_argument("--output_dir", type=str, default="./output", help="The directory where generated outputs will be saved.")
|
46 |
+
parser.add_argument("--keep_intermediate", action="store_true", help="If set, intermediate outputs will be saved during processing.")
|
47 |
+
parser.add_argument("--disable_offload_model", action="store_true", help="If set, the model will not be offloaded from the GPU to CPU after Stage 1 inference.")
|
48 |
+
parser.add_argument("--cuda_idx", type=int, default=0)
|
49 |
+
# Config for xcodec and upsampler
|
50 |
+
parser.add_argument('--basic_model_config', default='./xcodec_mini_infer/final_ckpt/config.yaml', help='YAML files for xcodec configurations.')
|
51 |
+
parser.add_argument('--resume_path', default='./xcodec_mini_infer/final_ckpt/ckpt_00360000.pth', help='Path to the xcodec checkpoint.')
|
52 |
+
parser.add_argument('--config_path', type=str, default='./xcodec_mini_infer/decoders/config.yaml', help='Path to Vocos config file.')
|
53 |
+
parser.add_argument('--vocal_decoder_path', type=str, default='./xcodec_mini_infer/decoders/decoder_131000.pth', help='Path to Vocos decoder weights.')
|
54 |
+
parser.add_argument('--inst_decoder_path', type=str, default='./xcodec_mini_infer/decoders/decoder_151000.pth', help='Path to Vocos decoder weights.')
|
55 |
+
parser.add_argument('-r', '--rescale', action='store_true', help='Rescale output to avoid clipping.')
|
56 |
+
|
57 |
+
|
58 |
+
args = parser.parse_args()
|
59 |
+
if args.use_audio_prompt and not args.audio_prompt_path:
|
60 |
+
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
|
61 |
+
stage1_model = args.stage1_model
|
62 |
+
stage2_model = args.stage2_model
|
63 |
+
cuda_idx = args.cuda_idx
|
64 |
+
max_new_tokens = args.max_new_tokens
|
65 |
+
stage1_output_dir = os.path.join(args.output_dir, f"stage1")
|
66 |
+
stage2_output_dir = stage1_output_dir.replace('stage1', 'stage2')
|
67 |
+
os.makedirs(stage1_output_dir, exist_ok=True)
|
68 |
+
os.makedirs(stage2_output_dir, exist_ok=True)
|
69 |
+
|
70 |
+
# load tokenizer and model
|
71 |
+
device = torch.device(f"cuda:{cuda_idx}" if torch.cuda.is_available() else "cpu")
|
72 |
+
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
|
73 |
+
model = AutoModelForCausalLM.from_pretrained(
|
74 |
+
stage1_model,
|
75 |
+
torch_dtype=torch.bfloat16,
|
76 |
+
attn_implementation="flash_attention_2", # To enable flashattn, you have to install flash-attn
|
77 |
+
)
|
78 |
+
# to device, if gpu is available
|
79 |
+
model.to(device)
|
80 |
+
model.eval()
|
81 |
+
|
82 |
+
codectool = CodecManipulator("xcodec", 0, 1)
|
83 |
+
codectool_stage2 = CodecManipulator("xcodec", 0, 8)
|
84 |
+
model_config = OmegaConf.load(args.basic_model_config)
|
85 |
+
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
|
86 |
+
parameter_dict = torch.load(args.resume_path, map_location='cpu')
|
87 |
+
codec_model.load_state_dict(parameter_dict['codec_model'])
|
88 |
+
codec_model.to(device)
|
89 |
+
codec_model.eval()
|
90 |
+
|
91 |
+
class BlockTokenRangeProcessor(LogitsProcessor):
|
92 |
+
def __init__(self, start_id, end_id):
|
93 |
+
self.blocked_token_ids = list(range(start_id, end_id))
|
94 |
+
|
95 |
+
def __call__(self, input_ids, scores):
|
96 |
+
scores[:, self.blocked_token_ids] = -float("inf")
|
97 |
+
return scores
|
98 |
+
|
99 |
+
def load_audio_mono(filepath, sampling_rate=16000):
|
100 |
+
audio, sr = torchaudio.load(filepath)
|
101 |
+
# Convert to mono
|
102 |
+
audio = torch.mean(audio, dim=0, keepdim=True)
|
103 |
+
# Resample if needed
|
104 |
+
if sr != sampling_rate:
|
105 |
+
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
|
106 |
+
audio = resampler(audio)
|
107 |
+
return audio
|
108 |
+
|
109 |
+
def split_lyrics(lyrics):
|
110 |
+
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
|
111 |
+
segments = re.findall(pattern, lyrics, re.DOTALL)
|
112 |
+
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
|
113 |
+
return structured_lyrics
|
114 |
+
|
115 |
+
# Call the function and print the result
|
116 |
+
stage1_output_set = []
|
117 |
+
# Tips:
|
118 |
+
# genre tags support instrumental,genre,mood,vocal timbr and vocal gender
|
119 |
+
# all kinds of tags are needed
|
120 |
+
with open(args.genre_txt) as f:
|
121 |
+
genres = f.read().strip()
|
122 |
+
with open(args.lyrics_txt) as f:
|
123 |
+
lyrics = split_lyrics(f.read())
|
124 |
+
# intruction
|
125 |
+
full_lyrics = "\n".join(lyrics)
|
126 |
+
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
|
127 |
+
prompt_texts += lyrics
|
128 |
+
|
129 |
+
|
130 |
+
random_id = uuid.uuid4()
|
131 |
+
output_seq = None
|
132 |
+
# Here is suggested decoding config
|
133 |
+
top_p = 0.93
|
134 |
+
temperature = 1.0
|
135 |
+
repetition_penalty = 1.2
|
136 |
+
# special tokens
|
137 |
+
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
|
138 |
+
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
|
139 |
+
# Format text prompt
|
140 |
+
run_n_segments = min(args.run_n_segments+1, len(lyrics))
|
141 |
+
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
|
142 |
+
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
|
143 |
+
guidance_scale = 1.5 if i <=1 else 1.2
|
144 |
+
if i==0:
|
145 |
+
continue
|
146 |
+
if i==1:
|
147 |
+
if args.use_audio_prompt:
|
148 |
+
audio_prompt = load_audio_mono(args.audio_prompt_path)
|
149 |
+
audio_prompt.unsqueeze_(0)
|
150 |
+
with torch.no_grad():
|
151 |
+
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
|
152 |
+
raw_codes = raw_codes.transpose(0, 1)
|
153 |
+
raw_codes = raw_codes.cpu().numpy().astype(np.int16)
|
154 |
+
# Format audio prompt
|
155 |
+
code_ids = codectool.npy2ids(raw_codes[0])
|
156 |
+
audio_prompt_codec = code_ids[int(args.prompt_start_time *50): int(args.prompt_end_time *50)] # 50 is tps of xcodec
|
157 |
+
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa]
|
158 |
+
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
|
159 |
+
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
|
160 |
+
else:
|
161 |
+
head_id = mmtokenizer.tokenize(prompt_texts[0])
|
162 |
+
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
|
163 |
+
else:
|
164 |
+
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
|
165 |
+
|
166 |
+
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
|
167 |
+
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids
|
168 |
+
# Use window slicing in case output sequence exceeds the context of model
|
169 |
+
max_context = 16384-max_new_tokens-1
|
170 |
+
if input_ids.shape[-1] > max_context:
|
171 |
+
print(f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
|
172 |
+
input_ids = input_ids[:, -(max_context):]
|
173 |
+
with torch.no_grad():
|
174 |
+
output_seq = model.generate(
|
175 |
+
input_ids=input_ids,
|
176 |
+
max_new_tokens=max_new_tokens,
|
177 |
+
min_new_tokens=100,
|
178 |
+
do_sample=True,
|
179 |
+
top_p=top_p,
|
180 |
+
temperature=temperature,
|
181 |
+
repetition_penalty=repetition_penalty,
|
182 |
+
eos_token_id=mmtokenizer.eoa,
|
183 |
+
pad_token_id=mmtokenizer.eoa,
|
184 |
+
logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]),
|
185 |
+
guidance_scale=guidance_scale,
|
186 |
+
)
|
187 |
+
if output_seq[0][-1].item() != mmtokenizer.eoa:
|
188 |
+
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
|
189 |
+
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
|
190 |
+
if i > 1:
|
191 |
+
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
|
192 |
+
else:
|
193 |
+
raw_output = output_seq
|
194 |
+
|
195 |
+
# save raw output and check sanity
|
196 |
+
ids = raw_output[0].cpu().numpy()
|
197 |
+
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
|
198 |
+
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
|
199 |
+
if len(soa_idx)!=len(eoa_idx):
|
200 |
+
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')
|
201 |
+
|
202 |
+
vocals = []
|
203 |
+
instrumentals = []
|
204 |
+
range_begin = 1 if args.use_audio_prompt else 0
|
205 |
+
for i in range(range_begin, len(soa_idx)):
|
206 |
+
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]]
|
207 |
+
if codec_ids[0] == 32016:
|
208 |
+
codec_ids = codec_ids[1:]
|
209 |
+
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
|
210 |
+
vocals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[0])
|
211 |
+
vocals.append(vocals_ids)
|
212 |
+
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[1])
|
213 |
+
instrumentals.append(instrumentals_ids)
|
214 |
+
vocals = np.concatenate(vocals, axis=1)
|
215 |
+
instrumentals = np.concatenate(instrumentals, axis=1)
|
216 |
+
vocal_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_vocal_{random_id}".replace('.', '@')+'.npy')
|
217 |
+
inst_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_instrumental_{random_id}".replace('.', '@')+'.npy')
|
218 |
+
np.save(vocal_save_path, vocals)
|
219 |
+
np.save(inst_save_path, instrumentals)
|
220 |
+
stage1_output_set.append(vocal_save_path)
|
221 |
+
stage1_output_set.append(inst_save_path)
|
222 |
+
|
223 |
+
|
224 |
+
# offload model
|
225 |
+
if not args.disable_offload_model:
|
226 |
+
model.cpu()
|
227 |
+
del model
|
228 |
+
torch.cuda.empty_cache()
|
229 |
+
|
230 |
+
print("Stage 2 inference...")
|
231 |
+
model_stage2 = AutoModelForCausalLM.from_pretrained(
|
232 |
+
stage2_model,
|
233 |
+
torch_dtype=torch.float16,
|
234 |
+
attn_implementation="flash_attention_2"
|
235 |
+
)
|
236 |
+
model_stage2.to(device)
|
237 |
+
model_stage2.eval()
|
238 |
+
|
239 |
+
def stage2_generate(model, prompt, batch_size=16):
|
240 |
+
codec_ids = codectool.unflatten(prompt, n_quantizer=1)
|
241 |
+
codec_ids = codectool.offset_tok_ids(
|
242 |
+
codec_ids,
|
243 |
+
global_offset=codectool.global_offset,
|
244 |
+
codebook_size=codectool.codebook_size,
|
245 |
+
num_codebooks=codectool.num_codebooks,
|
246 |
+
).astype(np.int32)
|
247 |
+
|
248 |
+
# Prepare prompt_ids based on batch size or single input
|
249 |
+
if batch_size > 1:
|
250 |
+
codec_list = []
|
251 |
+
for i in range(batch_size):
|
252 |
+
idx_begin = i * 300
|
253 |
+
idx_end = (i + 1) * 300
|
254 |
+
codec_list.append(codec_ids[:, idx_begin:idx_end])
|
255 |
+
|
256 |
+
codec_ids = np.concatenate(codec_list, axis=0)
|
257 |
+
prompt_ids = np.concatenate(
|
258 |
+
[
|
259 |
+
np.tile([mmtokenizer.soa, mmtokenizer.stage_1], (batch_size, 1)),
|
260 |
+
codec_ids,
|
261 |
+
np.tile([mmtokenizer.stage_2], (batch_size, 1)),
|
262 |
+
],
|
263 |
+
axis=1
|
264 |
+
)
|
265 |
+
else:
|
266 |
+
prompt_ids = np.concatenate([
|
267 |
+
np.array([mmtokenizer.soa, mmtokenizer.stage_1]),
|
268 |
+
codec_ids.flatten(), # Flatten the 2D array to 1D
|
269 |
+
np.array([mmtokenizer.stage_2])
|
270 |
+
]).astype(np.int32)
|
271 |
+
prompt_ids = prompt_ids[np.newaxis, ...]
|
272 |
+
|
273 |
+
codec_ids = torch.as_tensor(codec_ids).to(device)
|
274 |
+
prompt_ids = torch.as_tensor(prompt_ids).to(device)
|
275 |
+
len_prompt = prompt_ids.shape[-1]
|
276 |
+
|
277 |
+
block_list = LogitsProcessorList([BlockTokenRangeProcessor(0, 46358), BlockTokenRangeProcessor(53526, mmtokenizer.vocab_size)])
|
278 |
+
|
279 |
+
# Teacher forcing generate loop
|
280 |
+
for frames_idx in range(codec_ids.shape[1]):
|
281 |
+
cb0 = codec_ids[:, frames_idx:frames_idx+1]
|
282 |
+
prompt_ids = torch.cat([prompt_ids, cb0], dim=1)
|
283 |
+
input_ids = prompt_ids
|
284 |
+
|
285 |
+
with torch.no_grad():
|
286 |
+
stage2_output = model.generate(input_ids=input_ids,
|
287 |
+
min_new_tokens=7,
|
288 |
+
max_new_tokens=7,
|
289 |
+
eos_token_id=mmtokenizer.eoa,
|
290 |
+
pad_token_id=mmtokenizer.eoa,
|
291 |
+
logits_processor=block_list,
|
292 |
+
)
|
293 |
+
|
294 |
+
assert stage2_output.shape[1] - prompt_ids.shape[1] == 7, f"output new tokens={stage2_output.shape[1]-prompt_ids.shape[1]}"
|
295 |
+
prompt_ids = stage2_output
|
296 |
+
|
297 |
+
# Return output based on batch size
|
298 |
+
if batch_size > 1:
|
299 |
+
output = prompt_ids.cpu().numpy()[:, len_prompt:]
|
300 |
+
output_list = [output[i] for i in range(batch_size)]
|
301 |
+
output = np.concatenate(output_list, axis=0)
|
302 |
+
else:
|
303 |
+
output = prompt_ids[0].cpu().numpy()[len_prompt:]
|
304 |
+
|
305 |
+
return output
|
306 |
+
|
307 |
+
def stage2_inference(model, stage1_output_set, stage2_output_dir, batch_size=4):
|
308 |
+
stage2_result = []
|
309 |
+
for i in tqdm(range(len(stage1_output_set))):
|
310 |
+
output_filename = os.path.join(stage2_output_dir, os.path.basename(stage1_output_set[i]))
|
311 |
+
|
312 |
+
if os.path.exists(output_filename):
|
313 |
+
print(f'{output_filename} stage2 has done.')
|
314 |
+
continue
|
315 |
+
|
316 |
+
# Load the prompt
|
317 |
+
prompt = np.load(stage1_output_set[i]).astype(np.int32)
|
318 |
+
|
319 |
+
# Only accept 6s segments
|
320 |
+
output_duration = prompt.shape[-1] // 50 // 6 * 6
|
321 |
+
num_batch = output_duration // 6
|
322 |
+
|
323 |
+
if num_batch <= batch_size:
|
324 |
+
# If num_batch is less than or equal to batch_size, we can infer the entire prompt at once
|
325 |
+
output = stage2_generate(model, prompt[:, :output_duration*50], batch_size=num_batch)
|
326 |
+
else:
|
327 |
+
# If num_batch is greater than batch_size, process in chunks of batch_size
|
328 |
+
segments = []
|
329 |
+
num_segments = (num_batch // batch_size) + (1 if num_batch % batch_size != 0 else 0)
|
330 |
+
|
331 |
+
for seg in range(num_segments):
|
332 |
+
start_idx = seg * batch_size * 300
|
333 |
+
# Ensure the end_idx does not exceed the available length
|
334 |
+
end_idx = min((seg + 1) * batch_size * 300, output_duration*50) # Adjust the last segment
|
335 |
+
current_batch_size = batch_size if seg != num_segments-1 or num_batch % batch_size == 0 else num_batch % batch_size
|
336 |
+
segment = stage2_generate(
|
337 |
+
model,
|
338 |
+
prompt[:, start_idx:end_idx],
|
339 |
+
batch_size=current_batch_size
|
340 |
+
)
|
341 |
+
segments.append(segment)
|
342 |
+
|
343 |
+
# Concatenate all the segments
|
344 |
+
output = np.concatenate(segments, axis=0)
|
345 |
+
|
346 |
+
# Process the ending part of the prompt
|
347 |
+
if output_duration*50 != prompt.shape[-1]:
|
348 |
+
ending = stage2_generate(model, prompt[:, output_duration*50:], batch_size=1)
|
349 |
+
output = np.concatenate([output, ending], axis=0)
|
350 |
+
output = codectool_stage2.ids2npy(output)
|
351 |
+
|
352 |
+
# Fix invalid codes (a dirty solution, which may harm the quality of audio)
|
353 |
+
# We are trying to find better one
|
354 |
+
fixed_output = copy.deepcopy(output)
|
355 |
+
for i, line in enumerate(output):
|
356 |
+
for j, element in enumerate(line):
|
357 |
+
if element < 0 or element > 1023:
|
358 |
+
counter = Counter(line)
|
359 |
+
most_frequant = sorted(counter.items(), key=lambda x: x[1], reverse=True)[0][0]
|
360 |
+
fixed_output[i, j] = most_frequant
|
361 |
+
# save output
|
362 |
+
np.save(output_filename, fixed_output)
|
363 |
+
stage2_result.append(output_filename)
|
364 |
+
return stage2_result
|
365 |
+
|
366 |
+
stage2_result = stage2_inference(model_stage2, stage1_output_set, stage2_output_dir, batch_size=args.stage2_batch_size)
|
367 |
+
print(stage2_result)
|
368 |
+
print('Stage 2 DONE.\n')
|
369 |
+
# convert audio tokens to audio
|
370 |
+
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
|
371 |
+
folder_path = os.path.dirname(path)
|
372 |
+
if not os.path.exists(folder_path):
|
373 |
+
os.makedirs(folder_path)
|
374 |
+
limit = 0.99
|
375 |
+
max_val = wav.abs().max()
|
376 |
+
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
|
377 |
+
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
|
378 |
+
# reconstruct tracks
|
379 |
+
recons_output_dir = os.path.join(args.output_dir, "recons")
|
380 |
+
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
|
381 |
+
os.makedirs(recons_mix_dir, exist_ok=True)
|
382 |
+
tracks = []
|
383 |
+
for npy in stage2_result:
|
384 |
+
codec_result = np.load(npy)
|
385 |
+
decodec_rlt=[]
|
386 |
+
with torch.no_grad():
|
387 |
+
decoded_waveform = codec_model.decode(torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device))
|
388 |
+
decoded_waveform = decoded_waveform.cpu().squeeze(0)
|
389 |
+
decodec_rlt.append(torch.as_tensor(decoded_waveform))
|
390 |
+
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
|
391 |
+
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")
|
392 |
+
tracks.append(save_path)
|
393 |
+
save_audio(decodec_rlt, save_path, 16000)
|
394 |
+
# mix tracks
|
395 |
+
for inst_path in tracks:
|
396 |
+
try:
|
397 |
+
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \
|
398 |
+
and 'instrumental' in inst_path:
|
399 |
+
# find pair
|
400 |
+
vocal_path = inst_path.replace('instrumental', 'vocal')
|
401 |
+
if not os.path.exists(vocal_path):
|
402 |
+
continue
|
403 |
+
# mix
|
404 |
+
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed'))
|
405 |
+
vocal_stem, sr = sf.read(inst_path)
|
406 |
+
instrumental_stem, _ = sf.read(vocal_path)
|
407 |
+
mix_stem = (vocal_stem + instrumental_stem) / 1
|
408 |
+
sf.write(recons_mix, mix_stem, sr)
|
409 |
+
except Exception as e:
|
410 |
+
print(e)
|
411 |
+
|
412 |
+
# vocoder to upsample audios
|
413 |
+
vocal_decoder, inst_decoder = build_codec_model(args.config_path, args.vocal_decoder_path, args.inst_decoder_path)
|
414 |
+
vocoder_output_dir = os.path.join(args.output_dir, 'vocoder')
|
415 |
+
vocoder_stems_dir = os.path.join(vocoder_output_dir, 'stems')
|
416 |
+
vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix')
|
417 |
+
os.makedirs(vocoder_mix_dir, exist_ok=True)
|
418 |
+
os.makedirs(vocoder_stems_dir, exist_ok=True)
|
419 |
+
for npy in stage2_result:
|
420 |
+
if 'instrumental' in npy:
|
421 |
+
# Process instrumental
|
422 |
+
instrumental_output = process_audio(
|
423 |
+
npy,
|
424 |
+
os.path.join(vocoder_stems_dir, 'instrumental.mp3'),
|
425 |
+
args.rescale,
|
426 |
+
args,
|
427 |
+
inst_decoder,
|
428 |
+
codec_model
|
429 |
+
)
|
430 |
+
else:
|
431 |
+
# Process vocal
|
432 |
+
vocal_output = process_audio(
|
433 |
+
npy,
|
434 |
+
os.path.join(vocoder_stems_dir, 'vocal.mp3'),
|
435 |
+
args.rescale,
|
436 |
+
args,
|
437 |
+
vocal_decoder,
|
438 |
+
codec_model
|
439 |
+
)
|
440 |
+
# mix tracks
|
441 |
+
try:
|
442 |
+
mix_output = instrumental_output + vocal_output
|
443 |
+
vocoder_mix = os.path.join(vocoder_mix_dir, os.path.basename(recons_mix))
|
444 |
+
save_audio(mix_output, vocoder_mix, 44100, args.rescale)
|
445 |
+
print(f"Created mix: {vocoder_mix}")
|
446 |
+
except RuntimeError as e:
|
447 |
+
print(e)
|
448 |
+
print(f"mix {vocoder_mix} failed! inst: {instrumental_output.shape}, vocal: {vocal_output.shape}")
|
449 |
+
|
450 |
+
# Post process
|
451 |
+
replace_low_freq_with_energy_matched(
|
452 |
+
a_file=recons_mix, # 16kHz
|
453 |
+
b_file=vocoder_mix, # 48kHz
|
454 |
+
c_file=os.path.join(args.output_dir, os.path.basename(recons_mix)),
|
455 |
+
cutoff_freq=5500.0
|
456 |
+
)
|
mm_tokenizer_v0.2_hf/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee5c7cbf32da93989f14d9ba635e3e1d1ab2cc88a92908a5ed0f149375f6ee49
|
3 |
+
size 1761962
|
mmtokenizer.py
ADDED
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC
|
2 |
+
from abc import abstractmethod
|
3 |
+
|
4 |
+
|
5 |
+
class AbstractTokenizer(ABC):
|
6 |
+
"""Abstract class for tokenizer."""
|
7 |
+
|
8 |
+
def __init__(self, name):
|
9 |
+
self.name = name
|
10 |
+
super().__init__()
|
11 |
+
|
12 |
+
@property
|
13 |
+
@abstractmethod
|
14 |
+
def vocab_size(self):
|
15 |
+
pass
|
16 |
+
|
17 |
+
@property
|
18 |
+
@abstractmethod
|
19 |
+
def vocab(self):
|
20 |
+
"""Dictionary from vocab text token to id token."""
|
21 |
+
pass
|
22 |
+
|
23 |
+
@property
|
24 |
+
@abstractmethod
|
25 |
+
def inv_vocab(self):
|
26 |
+
"""Dictionary from vocab id token to text token."""
|
27 |
+
pass
|
28 |
+
|
29 |
+
@abstractmethod
|
30 |
+
def tokenize(self, text):
|
31 |
+
pass
|
32 |
+
|
33 |
+
def detokenize(self, token_ids):
|
34 |
+
raise NotImplementedError('detokenizer is not implemented for {} '
|
35 |
+
'tokenizer'.format(self.name))
|
36 |
+
|
37 |
+
@property
|
38 |
+
def cls(self):
|
39 |
+
raise NotImplementedError('CLS is not provided for {} '
|
40 |
+
'tokenizer'.format(self.name))
|
41 |
+
|
42 |
+
@property
|
43 |
+
def sep(self):
|
44 |
+
raise NotImplementedError('SEP is not provided for {} '
|
45 |
+
'tokenizer'.format(self.name))
|
46 |
+
|
47 |
+
@property
|
48 |
+
def pad(self):
|
49 |
+
raise NotImplementedError('PAD is not provided for {} '
|
50 |
+
'tokenizer'.format(self.name))
|
51 |
+
|
52 |
+
@property
|
53 |
+
def eod(self):
|
54 |
+
raise NotImplementedError('EOD is not provided for {} '
|
55 |
+
'tokenizer'.format(self.name))
|
56 |
+
|
57 |
+
@property
|
58 |
+
def mask(self):
|
59 |
+
raise NotImplementedError('MASK is not provided for {} '
|
60 |
+
'tokenizer'.format(self.name))
|
61 |
+
|
62 |
+
|
63 |
+
class _SentencePieceTokenizer(AbstractTokenizer):
|
64 |
+
"""SentencePieceTokenizer-Megatron wrapper"""
|
65 |
+
|
66 |
+
def __init__(self, model_file, vocab_extra_ids=0):
|
67 |
+
name = 'SentencePieceTokenizer'
|
68 |
+
super().__init__(name)
|
69 |
+
|
70 |
+
import sentencepiece
|
71 |
+
self.tokenizer = sentencepiece.SentencePieceProcessor(model_file=model_file)
|
72 |
+
self._initalize(vocab_extra_ids)
|
73 |
+
|
74 |
+
def _populate_vocab(self):
|
75 |
+
self._vocab = {}
|
76 |
+
self._inv_vocab = {}
|
77 |
+
|
78 |
+
for i in range(len(self.tokenizer)):
|
79 |
+
t = self.tokenizer.id_to_piece(i)
|
80 |
+
self._inv_vocab[i] = t
|
81 |
+
self._vocab[t] = i
|
82 |
+
|
83 |
+
def _initalize(self, vocab_extra_ids):
|
84 |
+
self._populate_vocab()
|
85 |
+
self._special_tokens = {}
|
86 |
+
self._inv_special_tokens = {}
|
87 |
+
|
88 |
+
self._t5_tokens = []
|
89 |
+
|
90 |
+
def _add_special_token(t):
|
91 |
+
if t not in self._vocab:
|
92 |
+
next_id = len(self._vocab)
|
93 |
+
self._vocab[t] = next_id
|
94 |
+
self._inv_vocab[next_id] = t
|
95 |
+
self._special_tokens[t] = self._vocab[t]
|
96 |
+
self._inv_special_tokens[self._vocab[t]] = t
|
97 |
+
|
98 |
+
_add_special_token('<CLS>')
|
99 |
+
self._cls_id = self._vocab['<CLS>']
|
100 |
+
_add_special_token('<SEP>')
|
101 |
+
self._sep_id = self._vocab['<SEP>']
|
102 |
+
_add_special_token('<EOD>')
|
103 |
+
self._eod_id = self._vocab['<EOD>']
|
104 |
+
_add_special_token('<MASK>')
|
105 |
+
self._mask_id = self._vocab['<MASK>']
|
106 |
+
|
107 |
+
pad_id = self.tokenizer.pad_id()
|
108 |
+
try:
|
109 |
+
pad_token = self.tokenizer.id_to_piece(pad_id)
|
110 |
+
except IndexError:
|
111 |
+
pad_token = '<PAD>'
|
112 |
+
_add_special_token(pad_token)
|
113 |
+
self._pad_id = self._vocab[pad_token]
|
114 |
+
|
115 |
+
bos_id = self.tokenizer.bos_id()
|
116 |
+
try:
|
117 |
+
bos_token = self.tokenizer.id_to_piece(bos_id)
|
118 |
+
except IndexError:
|
119 |
+
bos_token = '<BOS>'
|
120 |
+
_add_special_token(bos_token)
|
121 |
+
self._bos_id = self._vocab[bos_token]
|
122 |
+
|
123 |
+
eos_id = self.tokenizer.eos_id()
|
124 |
+
try:
|
125 |
+
eos_token = self.tokenizer.id_to_piece(eos_id)
|
126 |
+
except IndexError:
|
127 |
+
eos_token = '<EOS>'
|
128 |
+
_add_special_token(eos_token)
|
129 |
+
self._eos_id = self._vocab[eos_token]
|
130 |
+
|
131 |
+
for i in range(vocab_extra_ids):
|
132 |
+
t = "<extra_id_{}>".format(i)
|
133 |
+
_add_special_token(t)
|
134 |
+
self._t5_tokens += [t]
|
135 |
+
|
136 |
+
@property
|
137 |
+
def vocab_size(self):
|
138 |
+
return len(self._vocab)
|
139 |
+
|
140 |
+
@property
|
141 |
+
def vocab(self):
|
142 |
+
return self._vocab
|
143 |
+
|
144 |
+
@property
|
145 |
+
def inv_vocab(self):
|
146 |
+
return self._inv_vocab
|
147 |
+
|
148 |
+
@property
|
149 |
+
def decoder(self):
|
150 |
+
return self._inv_vocab
|
151 |
+
|
152 |
+
@property
|
153 |
+
def encoder(self):
|
154 |
+
return self._vocab
|
155 |
+
|
156 |
+
# From:
|
157 |
+
# https://github.com/NVIDIA/NeMo/blob/c8fa217e811d60d11d014827c7f3845ff6c99ae7/nemo/collections/common/tokenizers/sentencepiece_tokenizer.py#L89
|
158 |
+
def tokenize(self, text):
|
159 |
+
ids = []
|
160 |
+
idx = 0
|
161 |
+
|
162 |
+
while 1:
|
163 |
+
indices = {}
|
164 |
+
for token in self._special_tokens:
|
165 |
+
try:
|
166 |
+
indices[token] = text[idx:].index(token)
|
167 |
+
except ValueError:
|
168 |
+
continue
|
169 |
+
if len(indices) == 0:
|
170 |
+
break
|
171 |
+
|
172 |
+
next_token = min(indices, key=indices.get)
|
173 |
+
next_idx = idx + indices[next_token]
|
174 |
+
|
175 |
+
ids.extend(self.tokenizer.encode_as_ids(text[idx:next_idx]))
|
176 |
+
ids.append(self._special_tokens[next_token])
|
177 |
+
idx = next_idx + len(next_token)
|
178 |
+
|
179 |
+
ids.extend(self.tokenizer.encode_as_ids(text[idx:]))
|
180 |
+
return ids
|
181 |
+
|
182 |
+
# From:
|
183 |
+
# https://github.com/NVIDIA/NeMo/blob/c8fa217e811d60d11d014827c7f3845ff6c99ae7/nemo/collections/common/tokenizers/sentencepiece_tokenizer.py#L125
|
184 |
+
def detokenize(self, ids):
|
185 |
+
text = ""
|
186 |
+
last_i = 0
|
187 |
+
|
188 |
+
for i, id in enumerate(ids):
|
189 |
+
if id in self._inv_special_tokens:
|
190 |
+
text += self.tokenizer.decode_ids(ids[last_i:i]) + " "
|
191 |
+
text += self._inv_special_tokens[id] + " "
|
192 |
+
last_i = i + 1
|
193 |
+
|
194 |
+
text += self.tokenizer.decode_ids(ids[last_i:])
|
195 |
+
return text
|
196 |
+
|
197 |
+
@property
|
198 |
+
def cls(self):
|
199 |
+
return self._cls_id
|
200 |
+
|
201 |
+
@property
|
202 |
+
def sep(self):
|
203 |
+
return self._sep_id
|
204 |
+
|
205 |
+
@property
|
206 |
+
def pad(self):
|
207 |
+
return self._pad_id
|
208 |
+
|
209 |
+
@property
|
210 |
+
def bos_token_id(self):
|
211 |
+
return self._bos_id
|
212 |
+
|
213 |
+
@property
|
214 |
+
def bos(self):
|
215 |
+
return self._bos_id
|
216 |
+
|
217 |
+
@property
|
218 |
+
def eod(self):
|
219 |
+
return self._eod_id
|
220 |
+
|
221 |
+
@property
|
222 |
+
def eos_token_id(self):
|
223 |
+
return self._eos_id
|
224 |
+
|
225 |
+
@property
|
226 |
+
def eos(self):
|
227 |
+
return self._eos_id
|
228 |
+
|
229 |
+
@property
|
230 |
+
def mask(self):
|
231 |
+
return self._mask_id
|
232 |
+
|
233 |
+
@property
|
234 |
+
def additional_special_tokens_ids(self):
|
235 |
+
return [self.vocab[k] for k in self._t5_tokens]
|
236 |
+
|
237 |
+
class _MMSentencePieceTokenizer(_SentencePieceTokenizer):
|
238 |
+
"""SentencePieceTokenizer-Megatron wrapper"""
|
239 |
+
|
240 |
+
def __init__(self, model_file, vocab_extra_ids=0):
|
241 |
+
super().__init__(model_file, vocab_extra_ids)
|
242 |
+
|
243 |
+
|
244 |
+
def _initalize(self, vocab_extra_ids):
|
245 |
+
self._populate_vocab()
|
246 |
+
self._special_tokens = {}
|
247 |
+
self._inv_special_tokens = {}
|
248 |
+
|
249 |
+
self._t5_tokens = []
|
250 |
+
|
251 |
+
def _add_special_token(t):
|
252 |
+
if t not in self._vocab:
|
253 |
+
next_id = len(self._vocab)
|
254 |
+
self._vocab[t] = next_id
|
255 |
+
self._inv_vocab[next_id] = t
|
256 |
+
self._special_tokens[t] = self._vocab[t]
|
257 |
+
self._inv_special_tokens[self._vocab[t]] = t
|
258 |
+
|
259 |
+
_add_special_token('<CLS>')
|
260 |
+
self._cls_id = self._vocab['<CLS>']
|
261 |
+
_add_special_token('<SEP>')
|
262 |
+
self._sep_id = self._vocab['<SEP>']
|
263 |
+
_add_special_token('<EOD>')
|
264 |
+
self._eod_id = self._vocab['<EOD>']
|
265 |
+
_add_special_token('<MASK>')
|
266 |
+
self._mask_id = self._vocab['<MASK>']
|
267 |
+
|
268 |
+
_add_special_token('<SOA>')
|
269 |
+
self._soa_id = self._vocab['<SOA>']
|
270 |
+
_add_special_token('<EOA>')
|
271 |
+
self._eoa_id = self._vocab['<EOA>']
|
272 |
+
_add_special_token('<SOV>')
|
273 |
+
self._sov_id = self._vocab['<SOV>']
|
274 |
+
_add_special_token('<EOV>')
|
275 |
+
self._eov_id = self._vocab['<EOV>']
|
276 |
+
_add_special_token('<SOI>')
|
277 |
+
self._soi_id = self._vocab['<SOI>']
|
278 |
+
_add_special_token('<EOI>')
|
279 |
+
self._eoi_id = self._vocab['<EOI>']
|
280 |
+
_add_special_token('<s_local>')
|
281 |
+
self._s_local_id = self._vocab['<s_local>']
|
282 |
+
_add_special_token('<e_local>')
|
283 |
+
self._e_local_id = self._vocab['<e_local>']
|
284 |
+
_add_special_token('<s_global>')
|
285 |
+
self._s_global_id = self._vocab['<s_global>']
|
286 |
+
_add_special_token('<e_global>')
|
287 |
+
self._e_global_id = self._vocab['<e_global>']
|
288 |
+
_add_special_token('<stage_1>')
|
289 |
+
self._stage_1_id = self._vocab['<stage_1>']
|
290 |
+
_add_special_token('<stage_2>')
|
291 |
+
self._stage_2_id = self._vocab['<stage_2>']
|
292 |
+
pad_id = self.tokenizer.pad_id()
|
293 |
+
try:
|
294 |
+
pad_token = self.tokenizer.id_to_piece(pad_id)
|
295 |
+
except IndexError:
|
296 |
+
pad_token = '<PAD>'
|
297 |
+
_add_special_token(pad_token)
|
298 |
+
self._pad_id = self._vocab[pad_token]
|
299 |
+
|
300 |
+
bos_id = self.tokenizer.bos_id()
|
301 |
+
try:
|
302 |
+
bos_token = self.tokenizer.id_to_piece(bos_id)
|
303 |
+
except IndexError:
|
304 |
+
bos_token = '<BOS>'
|
305 |
+
_add_special_token(bos_token)
|
306 |
+
self._bos_id = self._vocab[bos_token]
|
307 |
+
|
308 |
+
eos_id = self.tokenizer.eos_id()
|
309 |
+
try:
|
310 |
+
eos_token = self.tokenizer.id_to_piece(eos_id)
|
311 |
+
except IndexError:
|
312 |
+
eos_token = '<EOS>'
|
313 |
+
_add_special_token(eos_token)
|
314 |
+
self._eos_id = self._vocab[eos_token]
|
315 |
+
|
316 |
+
for i in range(vocab_extra_ids):
|
317 |
+
t = "<extra_id_{}>".format(i)
|
318 |
+
_add_special_token(t)
|
319 |
+
self._t5_tokens += [t]
|
320 |
+
|
321 |
+
@property
|
322 |
+
def soa(self):
|
323 |
+
return self._soa_id
|
324 |
+
|
325 |
+
@property
|
326 |
+
def eoa(self):
|
327 |
+
return self._eoa_id
|
328 |
+
|
329 |
+
@property
|
330 |
+
def sov(self):
|
331 |
+
return self._sov_id
|
332 |
+
|
333 |
+
@property
|
334 |
+
def eov(self):
|
335 |
+
return self._eov_id
|
336 |
+
|
337 |
+
@property
|
338 |
+
def soi(self):
|
339 |
+
return self._soi_id
|
340 |
+
|
341 |
+
@property
|
342 |
+
def eoi(self):
|
343 |
+
return self._eoi_id
|
344 |
+
|
345 |
+
@property
|
346 |
+
def s_local(self):
|
347 |
+
return self._s_local_id
|
348 |
+
|
349 |
+
@property
|
350 |
+
def e_local(self):
|
351 |
+
return self._e_local_id
|
352 |
+
|
353 |
+
@property
|
354 |
+
def s_global(self):
|
355 |
+
return self._s_global_id
|
356 |
+
|
357 |
+
@property
|
358 |
+
def e_global(self):
|
359 |
+
return self._e_global_id
|
360 |
+
|
361 |
+
@property
|
362 |
+
def stage_1(self):
|
363 |
+
return self._stage_1_id
|
364 |
+
|
365 |
+
@property
|
366 |
+
def stage_2(self):
|
367 |
+
return self._stage_2_id
|
prompt_examples/genre.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
inspiring female uplifting pop airy vocal electronic bright vocal vocal
|
prompt_examples/lyrics.txt
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[verse]
|
2 |
+
Staring at the sunset, colors paint the sky
|
3 |
+
Thoughts of you keep swirling, can't deny
|
4 |
+
I know I let you down, I made mistakes
|
5 |
+
But I'm here to mend the heart I didn't break
|
6 |
+
|
7 |
+
[chorus]
|
8 |
+
Every road you take, I'll be one step behind
|
9 |
+
Every dream you chase, I'm reaching for the light
|
10 |
+
You can't fight this feeling now
|
11 |
+
I won't back down
|
12 |
+
You know you can't deny it now
|
13 |
+
I won't back down
|
14 |
+
|
15 |
+
[verse]
|
16 |
+
They might say I'm foolish, chasing after you
|
17 |
+
But they don't feel this love the way we do
|
18 |
+
My heart beats only for you, can't you see?
|
19 |
+
I won't let you slip away from me
|
20 |
+
|
21 |
+
[chorus]
|
22 |
+
Every road you take, I'll be one step behind
|
23 |
+
Every dream you chase, I'm reaching for the light
|
24 |
+
You can't fight this feeling now
|
25 |
+
I won't back down
|
26 |
+
You know you can't deny it now
|
27 |
+
I won't back down
|
28 |
+
|
29 |
+
[bridge]
|
30 |
+
No, I won't back down, won't turn around
|
31 |
+
Until you're back where you belong
|
32 |
+
I'll cross the oceans wide, stand by your side
|
33 |
+
Together we are strong
|
34 |
+
|
35 |
+
[outro]
|
36 |
+
Every road you take, I'll be one step behind
|
37 |
+
Every dream you chase, love's the tie that binds
|
38 |
+
You can't fight this feeling now
|
39 |
+
I won't back down
|