KingNish commited on
Commit
c5a0b98
·
verified ·
1 Parent(s): 7bd0f24

Upload ./RepCodec/README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. RepCodec/README.md +273 -0
RepCodec/README.md ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # RepCodec: A Speech Representation Codec for Speech Tokenization
2
+
3
+ > [**RepCodec: A Speech Representation Codec for Speech Tokenization**](https://arxiv.org/abs/2309.00169)
4
+
5
+ ## Introduction
6
+
7
+ **RepCodec** is a speech tokenization method for converting a speech waveform into a sequence of discrete semantic
8
+ tokens.
9
+ The main idea is to train a representation codec which learns a vector quantization codebook through reconstructing the
10
+ input speech representations from speech encoders like HuBERT or data2vec.
11
+ Extensive experiments show that RepCodec significantly outperforms the widely used k-means clustering approach in both
12
+ speech understanding and generation.
13
+ Also, RepCodec generalizes well across various speech encoders and languages.
14
+
15
+ <img src="images/RepCodec.png" alt="se" width="1000" />
16
+
17
+ ## RepCodec Models
18
+
19
+ | Feature Type | Speech Data | RepCodec Model |
20
+ |-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
21
+ | [HuBERT base](https://github.com/facebookresearch/fairseq/tree/main/examples/hubert#pre-trained-and-fine-tuned-asr-models) layer 9 | [Librispeech](http://www.openslr.org/12) train-clean-100 | [hubert_base_l9](https://drive.google.com/file/d/1XD0HKl607FFjri2-VJT7lHQeSpxsCCFO/view?usp=sharing) |
22
+ | [HuBERT large](https://github.com/facebookresearch/fairseq/tree/main/examples/hubert#pre-trained-and-fine-tuned-asr-models) layer 18 | [Librispeech](http://www.openslr.org/12) train-clean-100 | [hubert_large_l18](https://drive.google.com/file/d/1mTbm5GeJ7gp_5L3QLP-JGXdf8RnRw5n6/view?usp=sharing) |
23
+ | [data2vec base](https://github.com/facebookresearch/fairseq/blob/main/examples/data2vec/README.md#speech-2) layer 6 | [Librispeech](http://www.openslr.org/12) train-clean-100 | [data2vec_base_l6](https://drive.google.com/file/d/1d8sf3Ko_fYM9zlaiwxK_4xusLRKV5EMd/view?usp=sharing) |
24
+ | [data2vec large](https://github.com/facebookresearch/fairseq/blob/main/examples/data2vec/README.md#speech-2) layer 18 | [Librispeech](http://www.openslr.org/12) train-clean-100 | [data2vec_large_l18](https://drive.google.com/file/d/1nuRIHaejT-uVi4cluftbT8o_JZqar5SU/view?usp=sharing) |
25
+ | [Whisper medium](https://github.com/openai/whisper/tree/main#available-models-and-languages) layer 24 | [Librispeech](http://www.openslr.org/12) train-clean-100 | [whisper_medium_l24](https://drive.google.com/file/d/1V6YJSA2V4iywXrecJAN0oqsa3aHowexZ/view?usp=sharing) |
26
+ | [Whisper large-v2](https://github.com/openai/whisper/tree/main#available-models-and-languages) layer 32 | [Librispeech](http://www.openslr.org/12) train-clean-100 | [whisper_large_l32](https://drive.google.com/file/d/1k_X7ZMPg8iOeDrIJe70v6CHfFygzufXC/view?usp=sharing) |
27
+
28
+ ## Speech Tokenization Using Pre-Trained Models
29
+
30
+ ### Installation
31
+
32
+ Please first install RepCodec by
33
+
34
+ ```
35
+ git clone https://github.com/mct10/RepCodec.git
36
+ cd RepCodec
37
+ pip install .
38
+ ```
39
+
40
+ We used Python 3.9.18 and PyTorch 1.12.1 to test the usage, but the code should be compatible with other recent Python
41
+ and PyTorch versions.
42
+
43
+ ### Representation Preparation
44
+
45
+ We adapt the `dump_hubert_feature.py` script
46
+ from [fairseq](https://github.com/facebookresearch/fairseq/tree/main/examples/hubert/simple_kmeans#hubert-feature)
47
+ to support dumping representations from **data2vec**, **HuBERT**, or **Whisper** encoders.
48
+
49
+ If you use our script (`examples/dump_feature.py`), please also install the following packages:
50
+
51
+ ```
52
+ pip install npy_append_array soundfile
53
+ ```
54
+
55
+ Additionally, if you want to dump representations from
56
+
57
+ - **data2vec** or **HuBERT**: please
58
+ follow [fairseq's instruction](https://github.com/facebookresearch/fairseq#requirements-and-installation) to install
59
+ the latest fairseq.
60
+
61
+ - **Whisper**: please follow [Whispers'instruction](https://github.com/openai/whisper/tree/main#setup) to install the
62
+ latest
63
+ Whisper.
64
+
65
+ Then, you can follow the given examples to dump representations:
66
+
67
+ ```
68
+ # Example 1: dump from HuBERT base layer 9
69
+ # (for data2vec, simply change "model_type" to data2vec and "ckpt_path" to the path of data2vec model)
70
+
71
+ layer=9
72
+
73
+ python3 examples/dump_feature.py \
74
+ --model_type hubert \
75
+ --tsv_path /path/to/tsv/file \
76
+ --ckpt_path /path/to/HuBERT/model \
77
+ --layer ${layer} \
78
+ --feat_dir /dir/to/save/representations
79
+
80
+
81
+ # Example 2: dump from Whisper medium layer 24
82
+
83
+ layer=24
84
+
85
+ python3 examples/dump_feature.py \
86
+ --model_type whisper \
87
+ --tsv_path /path/to/tsv/file \
88
+ --whisper_root /directory/to/save/whisper/model \
89
+ --whisper_name medium \
90
+ --layer ${layer} \
91
+ --feat_dir /dir/to/save/representations
92
+ ```
93
+
94
+ Explanations about the args:
95
+
96
+ - **model_type:** choose from `data2vec`, `hubert`, and `whisper`.
97
+
98
+ - **tsv_path:** path of the tsv file.
99
+ Should have the format of
100
+
101
+ ```
102
+ /dir/to/dataset
103
+ path_of_utterance_1 number_of_frames
104
+ path_of_utterance_2 number_of_frames
105
+ ```
106
+
107
+ You can follow [this script](https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec/wav2vec_manifest.py)
108
+ to generate the tsv file.
109
+
110
+ For example, by running
111
+
112
+ ```
113
+ python wav2vec_manifest.py \
114
+ /dir/to/LibriSpeech/dev-clean \
115
+ --dest /dir/to/manifest \
116
+ --ext flac \
117
+ --valid-percent 0
118
+ ```
119
+
120
+ you can obtain the `dev-clean.tsv` in `/dir/to/manifest` for LibriSpeech. (By default, the output file name
121
+ is `train.tsv`. Remember to rename the file.)
122
+
123
+ It should be similar to:
124
+
125
+ ```
126
+ /dir/to/LibriSpeech/dev-clean
127
+ 2277/149896/2277-149896-0026.flac 78720
128
+ 2277/149896/2277-149896-0005.flac 89600
129
+ 2277/149896/2277-149896-0033.flac 45520
130
+ ```
131
+
132
+ - **ckpt_path**:
133
+ must provide for data2vec and HuBERT.
134
+ You need to download the model
135
+ from [data2vec website](https://github.com/facebookresearch/fairseq/blob/main/examples/data2vec/README.md#speech-2)
136
+ or [HuBERT website](https://github.com/facebookresearch/fairseq/tree/main/examples/hubert#pre-trained-and-fine-tuned-asr-models)
137
+ yourself.
138
+ `--ckpt_path` is the path of the data2vec/HuBERT model.
139
+ - **whisper_root** and **whisper_name**:
140
+ must provide **BOTH** `--whisper_root` and `--whisper_name` for Whisper.
141
+ If there is no corresponding model in `--whisper_root`, the script will download for you.
142
+
143
+ - **layer**:
144
+ which Transformer encoder layer of the model should the representations be extracted from.
145
+ It is **1-based**.
146
+ For example, if layer=9, then the outputs from the 9<sup>th</sup> Transformer encoder layer are dumped.
147
+ Range: [1, number of Transformer encoder layers]
148
+
149
+ - **feat_dir**: The output representations will be saved to `${feat_dir}/0_1.npy`
150
+ and `${feat_dir}/0_1.len`.
151
+
152
+ For other useful functionalities (e.g., sharding), please check the argument list in `examples/dump_feature.py`.
153
+
154
+ ### Command Line Usage
155
+
156
+ We expect to have `${feat_dir}/0_1.npy` and `${feat_dir}/0_1.len` in the provided
157
+ directory `/dir/to/representaitons`.
158
+
159
+ Also, the tsv file should be the **same** as the one used in [Representation Preparation](#representation-preparation).
160
+
161
+ ```
162
+ repcodec /dir/to/representaitons \
163
+ --model /path/to/repcodec/model \
164
+ --tsv_path /path/to/tsv/file \
165
+ [--model_config_path /path/to/train/config] \
166
+ [--use_gpu] \
167
+ [--out_dir /path/to/output]
168
+ ```
169
+
170
+ If you trained the model yourself following [Training New RepCodec Models](#training-new-repcodec-models),
171
+ please provide the training config file using `--model_config_path`.
172
+ If you use the model we provide [here](#repcodec-models), then you do not have to provide that.
173
+
174
+ This command will tokenize the representations and the output discrete tokens will be saved to `${out_dir}/tokens`.
175
+ The tokens are in the same order as the provided tsv file.
176
+
177
+ An example of the output file:
178
+
179
+ ```
180
+ /dir/to/LibriSpeech/dev-clean
181
+ 2277/149896/2277-149896-0026.flac 696 696 198 198 198 498 ...
182
+ 2277/149896/2277-149896-0005.flac 696 696 198 198 198 907 ...
183
+ 2277/149896/2277-149896-0033.flac 696 696 198 198 198 696 ...
184
+ ```
185
+
186
+ Under `examples/tokens`, we provide some token files as references. They are obtained from LibriSpeech dev-clean subset
187
+ using the 6 types of representations and corresponding [RepCodec Models](#repcodec-models).
188
+ Your results should be very similar to ours.
189
+
190
+ ### Python Usage
191
+
192
+ ```python
193
+ import torch
194
+ import yaml
195
+
196
+ from repcodec.RepCodec import RepCodec
197
+
198
+ # for feature types of HubERT base & data2vec base, please use repcodec_dim768.yaml;
199
+ # for feature types of HuBERT large & data2vec large & Whisper medium, please use repcodec_dim1024.yaml;
200
+ # for feature types of Whisper large-v2, please use repcodec_dim1280.yaml
201
+ config = "repcodec/configs/repcodec_dim768.yaml"
202
+ with open(config) as fp:
203
+ conf = yaml.load(fp, Loader=yaml.FullLoader)
204
+
205
+ model = RepCodec(**conf)
206
+ model.load_state_dict(torch.load("./hubert_base_l9.pkl", map_location="cpu")["model"]["repcodec"])
207
+ model.quantizer.initial()
208
+ model.eval()
209
+
210
+ # input shape: (batch size, hidden dim, sequence length)
211
+ random_features = torch.randn(size=(1, 768, 100))
212
+ with torch.no_grad():
213
+ x = model.encoder(random_features)
214
+ z = model.projector(x)
215
+ _, idx = model.quantizer.codebook.forward_index(z.transpose(2, 1))
216
+ tokens = idx.cpu().data.numpy().tolist()[0]
217
+ ```
218
+
219
+ ## Training New RepCodec Models
220
+
221
+ We use a config file to set up all the training configurations, e.g., data, model architecture,
222
+ optimizer, scheduler.
223
+ We provide an example [here](./train_configs/ex_dim768_mse.yaml).
224
+
225
+ Please first install required packages following [Installation](#installation)
226
+ and prepare the representations following [Representation Preparation](#representation-preparation).
227
+
228
+ The input data directory is expected to have the following structure
229
+ ```
230
+ /dir/to/representations/
231
+ train_set_name/
232
+ 0_1.npy
233
+ 0_1.len
234
+ valid_set_name/
235
+ 0_1.npy
236
+ 0_1.len
237
+ test_set_name/
238
+ 0_1.npy
239
+ 0_1.len
240
+ ```
241
+
242
+ The names of subsets should be the same as the fields in the config file.
243
+
244
+ Then, you can run training by
245
+ ```
246
+ python train.py \
247
+ -c /path/to/config/file \
248
+ --tag $tag \
249
+ --exp_root exp
250
+ ```
251
+
252
+ `tag` is the name of the output folder.
253
+ All outputs will be saved to `exp_root/tag/`.
254
+
255
+ ## Acknowledge
256
+
257
+ Our implementation is based on [facebookresearch/AudioDec](https://github.com/facebookresearch/AudioDec).
258
+ We thank them for open-sourcing their code!
259
+
260
+ ## Citation
261
+
262
+ If you find our work useful, please cite the following article.
263
+
264
+ ```
265
+ @misc{huang2023repcodec,
266
+ title={RepCodec: A Speech Representation Codec for Speech Tokenization},
267
+ author={Zhichao Huang and Chutong Meng and Tom Ko},
268
+ year={2023},
269
+ eprint={2309.00169},
270
+ archivePrefix={arXiv},
271
+ primaryClass={eess.AS}
272
+ }
273
+ ```