Spaces:
Sleeping
Sleeping
File size: 7,204 Bytes
13c8e0f 6eed986 13c8e0f f757ba6 13c8e0f f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import gradio as gr
from llm_call import GeminiLLM
from seminar_edition_ai import upload_file_ex, predictContemplando, predictProclamando, predictFromInit, \
downloadSermonFile, fileAddresToDownload, predictQuestionBuild, predictDevotionBuild, \
contemplandoQuestion, proclamandoQuestion, llm, embed_model
HISTORY_ANSWER = ''
with gr.Blocks() as demo:
gr.Markdown("SermonLab AI Demo.")
with gr.Tab("Preparando mi Serm贸n"):
text_input = gr.Textbox(label="T贸pico del serm贸n")
with gr.Accordion("Contemplando y Proclamando", open=False):
checkButton = gr.Checkbox(
value=False,
label="Mantener historial"
)
with gr.Row():
with gr.Tab("Contemplando"):
inbtwContemplando = gr.Button(f"Devocionalmente: {contemplandoQuestion['DEVOCIONALMENTE']}")
inbtwContemplandoOne = gr.Button(f"Ex茅gesis: {contemplandoQuestion['EX脡GESIS']}")
inbtwContemplandoTwo = gr.Button(f"Cristo: {contemplandoQuestion['CRISTO']}")
inbtwContemplandoTree = gr.Button(f"Arco Redentor: {contemplandoQuestion['ARCO REDENTOR']}")
inbtwContemplandoFour = gr.Button(f"Evangeli贸n: {contemplandoQuestion['EVANGELION']}")
inbtwContemplandoFourOne = gr.Button(f"Evangeli贸n: {contemplandoQuestion['EVANGELION_TWO']}")
with gr.Tab("Proclamando"):
inbtwProclamando = gr.Button(f"P煤blico: {proclamandoQuestion['P脷BLICO']}")
inbtwProclamandoOne = gr.Button(f"Historia: {proclamandoQuestion['HISTORIA']}")
inbtwProclamandoTwo = gr.Button(f"Expectativas: {proclamandoQuestion['EXPECTATIVAS']}")
inbtwProclamandoTwoTwo = gr.Button(f"Expectativas: {proclamandoQuestion['EXPECTATIVAS_TWO']}")
text_output = gr.Textbox(label="Respuesta", lines=10)
text_button = gr.Button("Crear")
text_download = gr.DownloadButton(
label="Descargar",
value=fileAddresToDownload,
every=10
)
inbtwContemplando.click(
fn=lambda x: predictContemplando(f"DEVOCIONALMENTE"),
inputs=text_input,
outputs=text_output
)
inbtwContemplandoOne.click(
fn=lambda x: predictContemplando(f"EX脡GESIS"),
inputs=text_input,
outputs=text_output
)
inbtwContemplandoTwo.click(
fn=lambda x: predictContemplando(f"CRISTO"),
inputs=text_input,
outputs=text_output
)
inbtwContemplandoTree.click(
fn=lambda x: predictContemplando(f"ARCO REDENTOR"),
inputs=text_input,
outputs=text_output
)
inbtwContemplandoFour.click(
fn=lambda x: predictContemplando(f"EVANGELION"),
inputs=text_input,
outputs=text_output
)
inbtwContemplandoFourOne.click(
fn=lambda x: predictContemplando(f"EVANGELION_TWO"),
inputs=text_input,
outputs=text_output
)
##---------------------------------------------------------------------
inbtwProclamando.click(
fn=lambda x: predictProclamando(f"P脷BLICO"),
inputs=text_input,
outputs=text_output
)
inbtwProclamandoOne.click(
fn=lambda x: predictProclamando(f"HISTORIA"),
inputs=text_input,
outputs=text_output
)
inbtwProclamandoTwo.click(
fn=lambda x: predictProclamando(f"EXPECTATIVAS"),
inputs=text_input,
outputs=text_output
)
inbtwProclamandoTwoTwo.click(
fn=lambda x: predictProclamando(f"EXPECTATIVAS_TWO"),
inputs=text_input,
outputs=text_output
)
text_button.click(
fn=predictFromInit,
inputs=text_input,
outputs=text_output
)
text_download.click(
fn=downloadSermonFile,
inputs=text_output
)
with gr.Tab("Obtener gu铆a de la comunidad (Preguntas)"):
with gr.Row():
#Bibliografy about components
# File (https://www.gradio.app/docs/gradio/file)
# Download Button (https://www.gradio.app/docs/gradio/downloadbutton)
with gr.Column():
file_input_question = gr.File()
upload_button_question = gr.UploadButton("Click to Upload a File", file_types=['.pdf'],
file_count="multiple")
with gr.Column():
temp_slider_question = gr.Slider(
minimum=1,
maximum=10,
value=1,
step=1,
interactive=True,
label="Preguntas",
)
text_output_question = gr.Textbox(label="Respuesta", lines=10)
text_button_question = gr.Button("Crear gu铆a de preguntas")
text_download_question = gr.DownloadButton(
label="Descargar",
value=fileAddresToDownload,
every=10
)
text_button_question.click(
fn=predictQuestionBuild,
outputs=text_output_question
)
upload_button_question.upload(upload_file_ex, inputs=upload_button_question,
outputs=[file_input_question, text_output_question])
with gr.Tab("Obtener gu铆a de la comunidad (Devocionario)"):
with gr.Row():
#Bibliografy about components
# File (https://www.gradio.app/docs/gradio/file)
# Download Button (https://www.gradio.app/docs/gradio/downloadbutton)
with gr.Column():
file_input_devotions = gr.File()
upload_button_devotion = gr.UploadButton("Click to Upload a File", file_types=['.pdf'],
file_count="multiple")
with gr.Column():
temp_slider_question = gr.Slider(
minimum=1,
maximum=10,
value=1,
step=1,
interactive=True,
label="Cantidad",
)
text_output_devotions = gr.Textbox(label="Respuesta", lines=10)
text_button_devotion = gr.Button("Crear")
text_download_question = gr.DownloadButton(
label="Descargar",
value=fileAddresToDownload,
every=10
)
text_button_devotion.click(
fn=predictDevotionBuild,
outputs=text_output_devotions
)
upload_button_devotion.upload(
upload_file_ex,
inputs=upload_button_devotion,
outputs=
[file_input_devotions, text_output_devotions]
)
if __name__ == "__main__":
llmBuilder = GeminiLLM()
embed_model = llmBuilder.getEmbeddingsModel()
llm = llmBuilder.getLLM()
demo.launch()
|