Spaces:
Running
Running
File size: 7,439 Bytes
f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
from langchain.docstore.document import Document
from langchain.chains.question_answering import load_qa_chain
import chromadb
from datetime import datetime
import os
from datetime import datetime
import pdfkit
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from pathlib import Path
import os
from pypdf import PdfReader
from llm_call import SermonGeminiPromptTemplate
bookQuestion = dict()
llm = None
embed_model = None
contemplandoQuestion = {
'DEVOCIONALMENTE':'¿Cómo estimula Dios su corazón a través de Su Palabra?',
'EXÉGESIS':'Cuál es el contexto de este pasaje?',
'CRISTO':'¿Cómo se comprende este texto a la luz de Cristo?',
'ARCO REDENTOR':'¿Cómo encaja este texto en la metanarrativa de las Escrituras?',
'EVANGELION': '¿Cómo se declara el evangelio en este texto?',
'EVANGELION_TWO': '¿Cómo interpretamos este texto a la luz del evangelio?',
}
proclamandoQuestion = {
'PÚBLICO':'¿Cuáles son los ídolos en los corazones de las personas que rechazarían el evangelio de Cristo?',
'HISTORIA':'¿Cómo el guión de su predicación comunica la historia de Dios?',
'EXPECTATIVAS': '¿Qué espera Dios que hagan como respuesta a esta predicación?',
'EXPECTATIVAS_TWO': '¿Cuáles son sus expectativas divinas como predicador de este mensaje?',
}
bookQuestion['Contemplando'] = contemplandoQuestion
bookQuestion['Proclamando'] = proclamandoQuestion
HISTORY_ANSWER = ""
DIRECTORY_PATH_TO_DOWNLOAD = 'data/sermon_lab_ai/download_files'
if not os.path.exists(DIRECTORY_PATH_TO_DOWNLOAD):
os.makedirs(f"{DIRECTORY_PATH_TO_DOWNLOAD}")
def getCurrentFileName():
now = datetime.now()
strNow = now.strftime("%m%d%Y_%H%M%S")
return f"sermonDay_{strNow}.pdf"
fileAddresToDownload = f"{DIRECTORY_PATH_TO_DOWNLOAD}{os.sep}{getCurrentFileName()}"
FILE_PATH_NAME = fileAddresToDownload
def updatePromptTemplate(promptTemplate, inputVariablesTemplate):
prompt = PromptTemplate(template = promptTemplate,
input_variables = inputVariablesTemplate)
chain = load_qa_chain(
llm,
chain_type = "stuff",
prompt = prompt
)
return chain
def predict(query):
templates = SermonGeminiPromptTemplate()
chain = updatePromptTemplate(
templates.getSermonPromptTemplate('BUILD_PREPARE_QUESTIONS'),
['question','SERMON_CONTEXT','context']
)
if query != '':
global retriever
answer = askQuestion(
query,
chain,
retriever,
topic = query,
KEY = 'question'
)
answer = (answer.split("<|assistant|>")[-1]).strip()
HISTORY_ANSWER = answer
return answer
else:
return query
def predictContemplando(queryKey):
#Call to LLM LangChaing inference
query = contemplandoQuestion[queryKey]
return predict(query)
def predictProclamando(queryKey):
#Call to LLM LangChaing inference
query = proclamandoQuestion[queryKey]
return predict(query)
####
#
####
def predictFromInit(sermonTopic):
global HISTORY_ANSWER
keyStr = 'SERMON_TOPIC'
templates = SermonGeminiPromptTemplate()
if HISTORY_ANSWER == '':
chain = updatePromptTemplate(
templates.getSermonPromptTemplates('BUILD_INIT'),
[keyStr,'CANT_VERSICULOS','context']
)
else:
chain = updatePromptTemplate(
templates.getSermonPromptTemplates('BUILD_EMPTY'),
['BIBLE_VERSICLE','context']
)
keyStr = 'BIBLE_VERSICLE'
global retriever
answer = askQuestionInit(
'',
chain,
retriever,
topic = sermonTopic,
KEY = keyStr
)
#Create a new document and build a retriver
if answer != '':
doc = Document(page_content="text", metadata = {"source": "local"})
vectorstore = Chroma.from_documents(
documents = [doc],
embedding = embed_model,
persist_directory="chroma_db_dir_sermon", # Local mode with in-memory storage only
collection_name="sermon_lab_ai"
)
retriever = vectorstore.as_retriever(
search_kwargs = {"k": 3}
)
HISTORY_ANSWER = answer
return answer
####
#
####
def predictQuestionBuild(sermonTopic):
templates = SermonGeminiPromptTemplate()
chain = updatePromptTemplate(
templates.getSermonPromptTemplates('BUILD_QUESTION'),
['SERMON_IDEA', 'context']
)
global retriever
answer = askQuestionEx(
'',
chain,
retriever,
topic = sermonTopic,
KEY = 'SERMON_IDEA'
)
return answer
####
#
####
def predictDevotionBuild(sermonTopic):
templates = SermonGeminiPromptTemplate()
chain = updatePromptTemplate(
templates.getSermonPromptTemplate('BUILD_REFLECTIONS'),
['SERMON_IDEA', 'context']
)
global retriever
global HISTORY_ANSWER
answer = askQuestionEx(
HISTORY_ANSWER,
chain,
retriever,
topic = sermonTopic,
KEY = 'SERMON_IDEA'
)
return answer
# A utility function for answer generation
def askQuestion(
question,
_chain,
_retriever,
topic = 'el amor de Dios',
KEY = 'SERMON_TOPIC'
):
#Obtener los Chunks relevantes a la pregunta en el RAG
#print(f" Question: {question}")
context = _retriever.get_relevant_documents(question)
#print("---- Contexto ----")
#print(context)
#print("____________________GLOBAL________")
global HISTORY_ANSWER
#print (HISTORY_ANSWER)
return (
_chain({
KEY: topic,
'SERMON_CONTEXT': HISTORY_ANSWER,
"input_documents": context,
"question": question
},
return_only_outputs = True)
)['output_text']
#A utility function for answer generation
def askQuestionEx(
question,
_chain,
_retriever,
topic = 'el amor de Dios',
KEY = 'SERMON_TOPIC'
):
context = _retriever.get_relevant_documents(question)
global HISTORY_ANSWER
return (
_chain({
KEY: topic,
"input_documents": context,
"question": question
},
return_only_outputs=True)
)['output_text']
# A utility function for answer generation
def askQuestionInit(
question,
_chain,
_retriever,
topic = 'el amor de Dios',
KEY = 'SERMON_TOPIC'
):
#Obtener los Chunks relevantes a la pregunta en el RAG
context = _retriever.get_relevant_documents(question)
settings = {
KEY: topic,
"input_documents": context,
"question": question
}
if KEY == 'SERMON_TOPIC':
settings['CANT_VERSICULOS'] = 5
return (
_chain(
settings,
return_only_outputs=True)
)['output_text']
def downloadSermonFile(answer):
if os.path.exists(FILE_PATH_NAME):
os.remove(FILE_PATH_NAME)
pdfkit.from_string(
answer,
FILE_PATH_NAME
)
return ""
def upload_file_ex(files):
file_paths = [file.name for file in files]
for filepath in file_paths:
name = Path(filepath)
file_content = 'Empty content'
if os.path.exists(filepath):
file_content = ''
reader = PdfReader(filepath)
for page in reader.pages:
file_content += page.extract_text()
HISTORY_ANSWER = file_content
return [file_paths, file_content] |