File size: 60,672 Bytes
66dbe5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
import os, sys

now_dir = os.getcwd()
sys.path.append(now_dir)
import logging
import shutil
import threading
import traceback
import warnings
from random import shuffle
from subprocess import Popen
from time import sleep
import json
import pathlib

import fairseq
import faiss
import gradio as gr
import numpy as np
import torch
from dotenv import load_dotenv
from sklearn.cluster import MiniBatchKMeans

from configs.config import Config
from i18n.i18n import I18nAuto
from infer.lib.train.process_ckpt import (
    change_info,
    extract_small_model,
    merge,
    show_info,
)
from infer.modules.uvr5.modules import uvr
from infer.modules.vc.modules import VC

logging.getLogger("numba").setLevel(logging.WARNING)

logger = logging.getLogger(__name__)

tmp = os.path.join(now_dir, "TEMP")
shutil.rmtree(tmp, ignore_errors=True)
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
os.makedirs(tmp, exist_ok=True)
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True)
os.environ["TEMP"] = tmp
warnings.filterwarnings("ignore")
torch.manual_seed(114514)


load_dotenv()
config = Config()
vc = VC(config)


if config.dml == True:

    def forward_dml(ctx, x, scale):
        ctx.scale = scale
        res = x.clone().detach()
        return res

    fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
i18n = I18nAuto()
logger.info(i18n)
# 判断是否有能用来训练和加速推理的N卡
ngpu = torch.cuda.device_count()
gpu_infos = []
mem = []
if_gpu_ok = False

if torch.cuda.is_available() or ngpu != 0:
    for i in range(ngpu):
        gpu_name = torch.cuda.get_device_name(i)
        if any(
            value in gpu_name.upper()
            for value in [
                "10",
                "16",
                "20",
                "30",
                "40",
                "A2",
                "A3",
                "A4",
                "P4",
                "A50",
                "500",
                "A60",
                "70",
                "80",
                "90",
                "M4",
                "T4",
                "TITAN",
            ]
        ):
            # A10#A100#V100#A40#P40#M40#K80#A4500
            if_gpu_ok = True  # 至少有一张能用的N卡
            gpu_infos.append("%s\t%s" % (i, gpu_name))
            mem.append(
                int(
                    torch.cuda.get_device_properties(i).total_memory
                    / 1024
                    / 1024
                    / 1024
                    + 0.4
                )
            )
if if_gpu_ok and len(gpu_infos) > 0:
    gpu_info = "\n".join(gpu_infos)
    default_batch_size = min(mem) // 2
else:
    gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
    default_batch_size = 1
gpus = "-".join([i[0] for i in gpu_infos])


class ToolButton(gr.Button, gr.components.FormComponent):
    """Small button with single emoji as text, fits inside gradio forms"""

    def __init__(self, **kwargs):
        super().__init__(variant="tool", **kwargs)

    def get_block_name(self):
        return "button"


weight_root = os.getenv("weight_root")
weight_uvr5_root = os.getenv("weight_uvr5_root")
index_root = os.getenv("index_root")

names = []
for name in os.listdir(weight_root):
    if name.endswith(".pth"):
        names.append(name)
index_paths = []
for root, dirs, files in os.walk(index_root, topdown=False):
    for name in files:
        if name.endswith(".index") and "trained" not in name:
            index_paths.append("%s/%s" % (root, name))
uvr5_names = []
for name in os.listdir(weight_uvr5_root):
    if name.endswith(".pth") or "onnx" in name:
        uvr5_names.append(name.replace(".pth", ""))


def change_choices():
    names = []
    for name in os.listdir(weight_root):
        if name.endswith(".pth"):
            names.append(name)
    index_paths = []
    for root, dirs, files in os.walk(index_root, topdown=False):
        for name in files:
            if name.endswith(".index") and "trained" not in name:
                index_paths.append("%s/%s" % (root, name))
    return {"choices": sorted(names), "__type__": "update"}, {
        "choices": sorted(index_paths),
        "__type__": "update",
    }


def clean():
    return {"value": "", "__type__": "update"}


def export_onnx():
    from infer.modules.onnx.export import export_onnx as eo

    eo()


sr_dict = {
    "32k": 32000,
    "40k": 40000,
    "48k": 48000,
}


def if_done(done, p):
    while 1:
        if p.poll() is None:
            sleep(0.5)
        else:
            break
    done[0] = True


def if_done_multi(done, ps):
    while 1:
        # poll==None代表进程未结束
        # 只要有一个进程未结束都不停
        flag = 1
        for p in ps:
            if p.poll() is None:
                flag = 0
                sleep(0.5)
                break
        if flag == 1:
            break
    done[0] = True


def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
    sr = sr_dict[sr]
    os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
    f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
    f.close()
    per = 3.0 if config.is_half else 3.7
    cmd = '"%s" infer/modules/train/preprocess.py "%s" %s %s "%s/logs/%s" %s %.1f' % (
        config.python_cmd,
        trainset_dir,
        sr,
        n_p,
        now_dir,
        exp_dir,
        config.noparallel,
        per,
    )
    logger.info(cmd)
    p = Popen(cmd, shell=True)  # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
    ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
    done = [False]
    threading.Thread(
        target=if_done,
        args=(
            done,
            p,
        ),
    ).start()
    while 1:
        with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
            yield (f.read())
        sleep(1)
        if done[0]:
            break
    with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
        log = f.read()
    logger.info(log)
    yield log


# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvpe):
    gpus = gpus.split("-")
    os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
    f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
    f.close()
    if if_f0:
        if f0method != "rmvpe_gpu":
            cmd = (
                '"%s" infer/modules/train/extract/extract_f0_print.py "%s/logs/%s" %s %s'
                % (
                    config.python_cmd,
                    now_dir,
                    exp_dir,
                    n_p,
                    f0method,
                )
            )
            logger.info(cmd)
            p = Popen(
                cmd, shell=True, cwd=now_dir
            )  # , stdin=PIPE, stdout=PIPE,stderr=PIPE
            ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
            done = [False]
            threading.Thread(
                target=if_done,
                args=(
                    done,
                    p,
                ),
            ).start()
        else:
            if gpus_rmvpe != "-":
                gpus_rmvpe = gpus_rmvpe.split("-")
                leng = len(gpus_rmvpe)
                ps = []
                for idx, n_g in enumerate(gpus_rmvpe):
                    cmd = (
                        '"%s" infer/modules/train/extract/extract_f0_rmvpe.py %s %s %s "%s/logs/%s" %s '
                        % (
                            config.python_cmd,
                            leng,
                            idx,
                            n_g,
                            now_dir,
                            exp_dir,
                            config.is_half,
                        )
                    )
                    logger.info(cmd)
                    p = Popen(
                        cmd, shell=True, cwd=now_dir
                    )  # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
                    ps.append(p)
                ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
                done = [False]
                threading.Thread(
                    target=if_done_multi,  #
                    args=(
                        done,
                        ps,
                    ),
                ).start()
            else:
                cmd = (
                    config.python_cmd
                    + ' infer/modules/train/extract/extract_f0_rmvpe_dml.py "%s/logs/%s" '
                    % (
                        now_dir,
                        exp_dir,
                    )
                )
                logger.info(cmd)
                p = Popen(
                    cmd, shell=True, cwd=now_dir
                )  # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
                p.wait()
                done = [True]
        while 1:
            with open(
                "%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
            ) as f:
                yield (f.read())
            sleep(1)
            if done[0]:
                break
        with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
            log = f.read()
        logger.info(log)
        yield log
    ####对不同part分别开多进程
    """
    n_part=int(sys.argv[1])
    i_part=int(sys.argv[2])
    i_gpu=sys.argv[3]
    exp_dir=sys.argv[4]
    os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
    """
    leng = len(gpus)
    ps = []
    for idx, n_g in enumerate(gpus):
        cmd = (
            '"%s" infer/modules/train/extract_feature_print.py %s %s %s %s "%s/logs/%s" %s'
            % (
                config.python_cmd,
                config.device,
                leng,
                idx,
                n_g,
                now_dir,
                exp_dir,
                version19,
            )
        )
        logger.info(cmd)
        p = Popen(
            cmd, shell=True, cwd=now_dir
        )  # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
        ps.append(p)
    ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
    done = [False]
    threading.Thread(
        target=if_done_multi,
        args=(
            done,
            ps,
        ),
    ).start()
    while 1:
        with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
            yield (f.read())
        sleep(1)
        if done[0]:
            break
    with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
        log = f.read()
    logger.info(log)
    yield log


def get_pretrained_models(path_str, f0_str, sr2):
    if_pretrained_generator_exist = os.access(
        "assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK
    )
    if_pretrained_discriminator_exist = os.access(
        "assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
    )
    if not if_pretrained_generator_exist:
        logger.warn(
            "assets/pretrained%s/%sG%s.pth not exist, will not use pretrained model",
            path_str,
            f0_str,
            sr2,
        )
    if not if_pretrained_discriminator_exist:
        logger.warn(
            "assets/pretrained%s/%sD%s.pth not exist, will not use pretrained model",
            path_str,
            f0_str,
            sr2,
        )
    return (
        "assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)
        if if_pretrained_generator_exist
        else "",
        "assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)
        if if_pretrained_discriminator_exist
        else "",
    )


def change_sr2(sr2, if_f0_3, version19):
    path_str = "" if version19 == "v1" else "_v2"
    f0_str = "f0" if if_f0_3 else ""
    return get_pretrained_models(path_str, f0_str, sr2)


def change_version19(sr2, if_f0_3, version19):
    path_str = "" if version19 == "v1" else "_v2"
    if sr2 == "32k" and version19 == "v1":
        sr2 = "40k"
    to_return_sr2 = (
        {"choices": ["40k", "48k"], "__type__": "update", "value": sr2}
        if version19 == "v1"
        else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2}
    )
    f0_str = "f0" if if_f0_3 else ""
    return (
        *get_pretrained_models(path_str, f0_str, sr2),
        to_return_sr2,
    )


def change_f0(if_f0_3, sr2, version19):  # f0method8,pretrained_G14,pretrained_D15
    path_str = "" if version19 == "v1" else "_v2"
    return (
        {"visible": if_f0_3, "__type__": "update"},
        *get_pretrained_models(path_str, "f0", sr2),
    )


# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
def click_train(
    exp_dir1,
    sr2,
    if_f0_3,
    spk_id5,
    save_epoch10,
    total_epoch11,
    batch_size12,
    if_save_latest13,
    pretrained_G14,
    pretrained_D15,
    gpus16,
    if_cache_gpu17,
    if_save_every_weights18,
    version19,
):
    # 生成filelist
    exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
    os.makedirs(exp_dir, exist_ok=True)
    gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
    feature_dir = (
        "%s/3_feature256" % (exp_dir)
        if version19 == "v1"
        else "%s/3_feature768" % (exp_dir)
    )
    if if_f0_3:
        f0_dir = "%s/2a_f0" % (exp_dir)
        f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
        names = (
            set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
            & set([name.split(".")[0] for name in os.listdir(feature_dir)])
            & set([name.split(".")[0] for name in os.listdir(f0_dir)])
            & set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
        )
    else:
        names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
            [name.split(".")[0] for name in os.listdir(feature_dir)]
        )
    opt = []
    for name in names:
        if if_f0_3:
            opt.append(
                "%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
                % (
                    gt_wavs_dir.replace("\\", "\\\\"),
                    name,
                    feature_dir.replace("\\", "\\\\"),
                    name,
                    f0_dir.replace("\\", "\\\\"),
                    name,
                    f0nsf_dir.replace("\\", "\\\\"),
                    name,
                    spk_id5,
                )
            )
        else:
            opt.append(
                "%s/%s.wav|%s/%s.npy|%s"
                % (
                    gt_wavs_dir.replace("\\", "\\\\"),
                    name,
                    feature_dir.replace("\\", "\\\\"),
                    name,
                    spk_id5,
                )
            )
    fea_dim = 256 if version19 == "v1" else 768
    if if_f0_3:
        for _ in range(2):
            opt.append(
                "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
                % (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
            )
    else:
        for _ in range(2):
            opt.append(
                "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
                % (now_dir, sr2, now_dir, fea_dim, spk_id5)
            )
    shuffle(opt)
    with open("%s/filelist.txt" % exp_dir, "w") as f:
        f.write("\n".join(opt))
    logger.debug("Write filelist done")
    # 生成config#无需生成config
    # cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
    logger.info("Use gpus: %s", str(gpus16))
    if pretrained_G14 == "":
        logger.info("No pretrained Generator")
    if pretrained_D15 == "":
        logger.info("No pretrained Discriminator")
    if version19 == "v1" or sr2 == "40k":
        config_path = "v1/%s.json" % sr2
    else:
        config_path = "v2/%s.json" % sr2
    config_save_path = os.path.join(exp_dir, "config.json")
    if not pathlib.Path(config_save_path).exists():
        with open(config_save_path, "w", encoding="utf-8") as f:
            json.dump(
                config.json_config[config_path],
                f,
                ensure_ascii=False,
                indent=4,
                sort_keys=True,
            )
            f.write("\n")
    if gpus16:
        cmd = (
            '"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
            % (
                config.python_cmd,
                exp_dir1,
                sr2,
                1 if if_f0_3 else 0,
                batch_size12,
                gpus16,
                total_epoch11,
                save_epoch10,
                "-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
                "-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
                1 if if_save_latest13 == i18n("是") else 0,
                1 if if_cache_gpu17 == i18n("是") else 0,
                1 if if_save_every_weights18 == i18n("是") else 0,
                version19,
            )
        )
    else:
        cmd = (
            '"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
            % (
                config.python_cmd,
                exp_dir1,
                sr2,
                1 if if_f0_3 else 0,
                batch_size12,
                total_epoch11,
                save_epoch10,
                "-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
                "-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
                1 if if_save_latest13 == i18n("是") else 0,
                1 if if_cache_gpu17 == i18n("是") else 0,
                1 if if_save_every_weights18 == i18n("是") else 0,
                version19,
            )
        )
    logger.info(cmd)
    p = Popen(cmd, shell=True, cwd=now_dir)
    p.wait()
    return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"


# but4.click(train_index, [exp_dir1], info3)
def train_index(exp_dir1, version19):
    # exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
    exp_dir = "logs/%s" % (exp_dir1)
    os.makedirs(exp_dir, exist_ok=True)
    feature_dir = (
        "%s/3_feature256" % (exp_dir)
        if version19 == "v1"
        else "%s/3_feature768" % (exp_dir)
    )
    if not os.path.exists(feature_dir):
        return "请先进行特征提取!"
    listdir_res = list(os.listdir(feature_dir))
    if len(listdir_res) == 0:
        return "请先进行特征提取!"
    infos = []
    npys = []
    for name in sorted(listdir_res):
        phone = np.load("%s/%s" % (feature_dir, name))
        npys.append(phone)
    big_npy = np.concatenate(npys, 0)
    big_npy_idx = np.arange(big_npy.shape[0])
    np.random.shuffle(big_npy_idx)
    big_npy = big_npy[big_npy_idx]
    if big_npy.shape[0] > 2e5:
        infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0])
        yield "\n".join(infos)
        try:
            big_npy = (
                MiniBatchKMeans(
                    n_clusters=10000,
                    verbose=True,
                    batch_size=256 * config.n_cpu,
                    compute_labels=False,
                    init="random",
                )
                .fit(big_npy)
                .cluster_centers_
            )
        except:
            info = traceback.format_exc()
            logger.info(info)
            infos.append(info)
            yield "\n".join(infos)

    np.save("%s/total_fea.npy" % exp_dir, big_npy)
    n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
    infos.append("%s,%s" % (big_npy.shape, n_ivf))
    yield "\n".join(infos)
    index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
    # index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
    infos.append("training")
    yield "\n".join(infos)
    index_ivf = faiss.extract_index_ivf(index)  #
    index_ivf.nprobe = 1
    index.train(big_npy)
    faiss.write_index(
        index,
        "%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
        % (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
    )

    infos.append("adding")
    yield "\n".join(infos)
    batch_size_add = 8192
    for i in range(0, big_npy.shape[0], batch_size_add):
        index.add(big_npy[i : i + batch_size_add])
    faiss.write_index(
        index,
        "%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
        % (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
    )
    infos.append(
        "成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index"
        % (n_ivf, index_ivf.nprobe, exp_dir1, version19)
    )
    # faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
    # infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
    yield "\n".join(infos)


# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
def train1key(
    exp_dir1,
    sr2,
    if_f0_3,
    trainset_dir4,
    spk_id5,
    np7,
    f0method8,
    save_epoch10,
    total_epoch11,
    batch_size12,
    if_save_latest13,
    pretrained_G14,
    pretrained_D15,
    gpus16,
    if_cache_gpu17,
    if_save_every_weights18,
    version19,
    gpus_rmvpe,
):
    infos = []

    def get_info_str(strr):
        infos.append(strr)
        return "\n".join(infos)

    ####### step1:处理数据
    yield get_info_str(i18n("step1:正在处理数据"))
    [get_info_str(_) for _ in preprocess_dataset(trainset_dir4, exp_dir1, sr2, np7)]

    ####### step2a:提取音高
    yield get_info_str(i18n("step2:正在提取音高&正在提取特征"))
    [
        get_info_str(_)
        for _ in extract_f0_feature(
            gpus16, np7, f0method8, if_f0_3, exp_dir1, version19, gpus_rmvpe
        )
    ]

    ####### step3a:训练模型
    yield get_info_str(i18n("step3a:正在训练模型"))
    click_train(
        exp_dir1,
        sr2,
        if_f0_3,
        spk_id5,
        save_epoch10,
        total_epoch11,
        batch_size12,
        if_save_latest13,
        pretrained_G14,
        pretrained_D15,
        gpus16,
        if_cache_gpu17,
        if_save_every_weights18,
        version19,
    )
    yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"))

    ####### step3b:训练索引
    [get_info_str(_) for _ in train_index(exp_dir1, version19)]
    yield get_info_str(i18n("全流程结束!"))


#                    ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
def change_info_(ckpt_path):
    if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")):
        return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
    try:
        with open(
            ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
        ) as f:
            info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
            sr, f0 = info["sample_rate"], info["if_f0"]
            version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
            return sr, str(f0), version
    except:
        traceback.print_exc()
        return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}


F0GPUVisible = config.dml == False


def change_f0_method(f0method8):
    if f0method8 == "rmvpe_gpu":
        visible = F0GPUVisible
    else:
        visible = False
    return {"visible": visible, "__type__": "update"}


with gr.Blocks(title="RVC WebUI") as app:
    gr.Markdown(
        value=i18n(
            "本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>."
        )
    )
    with gr.Tabs():
        with gr.TabItem(i18n("模型推理")):
            with gr.Row():
                sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names))
                refresh_button = gr.Button(i18n("刷新音色列表和索引路径"), variant="primary")
                clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
                spk_item = gr.Slider(
                    minimum=0,
                    maximum=2333,
                    step=1,
                    label=i18n("请选择说话人id"),
                    value=0,
                    visible=False,
                    interactive=True,
                )
                clean_button.click(
                    fn=clean, inputs=[], outputs=[sid0], api_name="infer_clean"
                )
            with gr.Group():
                gr.Markdown(
                    value=i18n("男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ")
                )
                with gr.Row():
                    with gr.Column():
                        vc_transform0 = gr.Number(
                            label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
                        )
                        input_audio0 = gr.Textbox(
                            label=i18n("输入待处理音频文件路径(默认是正确格式示例)"),
                            value="E:\\codes\\py39\\test-20230416b\\todo-songs\\冬之花clip1.wav",
                        )
                        f0method0 = gr.Radio(
                            label=i18n(
                                "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
                            ),
                            choices=["pm", "harvest", "crepe", "rmvpe"]
                            if config.dml == False
                            else ["pm", "harvest", "rmvpe"],
                            value="pm",
                            interactive=True,
                        )
                        filter_radius0 = gr.Slider(
                            minimum=0,
                            maximum=7,
                            label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
                            value=3,
                            step=1,
                            interactive=True,
                        )
                    with gr.Column():
                        file_index1 = gr.Textbox(
                            label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
                            value="",
                            interactive=True,
                        )
                        file_index2 = gr.Dropdown(
                            label=i18n("自动检测index路径,下拉式选择(dropdown)"),
                            choices=sorted(index_paths),
                            interactive=True,
                        )
                        refresh_button.click(
                            fn=change_choices,
                            inputs=[],
                            outputs=[sid0, file_index2],
                            api_name="infer_refresh",
                        )
                        # file_big_npy1 = gr.Textbox(
                        #     label=i18n("特征文件路径"),
                        #     value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
                        #     interactive=True,
                        # )
                        index_rate1 = gr.Slider(
                            minimum=0,
                            maximum=1,
                            label=i18n("检索特征占比"),
                            value=0.75,
                            interactive=True,
                        )
                    with gr.Column():
                        resample_sr0 = gr.Slider(
                            minimum=0,
                            maximum=48000,
                            label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
                            value=0,
                            step=1,
                            interactive=True,
                        )
                        rms_mix_rate0 = gr.Slider(
                            minimum=0,
                            maximum=1,
                            label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
                            value=0.25,
                            interactive=True,
                        )
                        protect0 = gr.Slider(
                            minimum=0,
                            maximum=0.5,
                            label=i18n(
                                "保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
                            ),
                            value=0.33,
                            step=0.01,
                            interactive=True,
                        )
                    f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"))
                    but0 = gr.Button(i18n("转换"), variant="primary")
                    with gr.Row():
                        vc_output1 = gr.Textbox(label=i18n("输出信息"))
                        vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
                    but0.click(
                        vc.vc_single,
                        [
                            spk_item,
                            input_audio0,
                            vc_transform0,
                            f0_file,
                            f0method0,
                            file_index1,
                            file_index2,
                            # file_big_npy1,
                            index_rate1,
                            filter_radius0,
                            resample_sr0,
                            rms_mix_rate0,
                            protect0,
                        ],
                        [vc_output1, vc_output2],
                        api_name="infer_convert",
                    )
            with gr.Group():
                gr.Markdown(
                    value=i18n("批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ")
                )
                with gr.Row():
                    with gr.Column():
                        vc_transform1 = gr.Number(
                            label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
                        )
                        opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
                        f0method1 = gr.Radio(
                            label=i18n(
                                "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
                            ),
                            choices=["pm", "harvest", "crepe", "rmvpe"]
                            if config.dml == False
                            else ["pm", "harvest", "rmvpe"],
                            value="pm",
                            interactive=True,
                        )
                        filter_radius1 = gr.Slider(
                            minimum=0,
                            maximum=7,
                            label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
                            value=3,
                            step=1,
                            interactive=True,
                        )
                    with gr.Column():
                        file_index3 = gr.Textbox(
                            label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
                            value="",
                            interactive=True,
                        )
                        file_index4 = gr.Dropdown(
                            label=i18n("自动检测index路径,下拉式选择(dropdown)"),
                            choices=sorted(index_paths),
                            interactive=True,
                        )
                        refresh_button.click(
                            fn=lambda: change_choices()[1],
                            inputs=[],
                            outputs=file_index4,
                            api_name="infer_refresh_batch",
                        )
                        # file_big_npy2 = gr.Textbox(
                        #     label=i18n("特征文件路径"),
                        #     value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
                        #     interactive=True,
                        # )
                        index_rate2 = gr.Slider(
                            minimum=0,
                            maximum=1,
                            label=i18n("检索特征占比"),
                            value=1,
                            interactive=True,
                        )
                    with gr.Column():
                        resample_sr1 = gr.Slider(
                            minimum=0,
                            maximum=48000,
                            label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
                            value=0,
                            step=1,
                            interactive=True,
                        )
                        rms_mix_rate1 = gr.Slider(
                            minimum=0,
                            maximum=1,
                            label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
                            value=1,
                            interactive=True,
                        )
                        protect1 = gr.Slider(
                            minimum=0,
                            maximum=0.5,
                            label=i18n(
                                "保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
                            ),
                            value=0.33,
                            step=0.01,
                            interactive=True,
                        )
                    with gr.Column():
                        dir_input = gr.Textbox(
                            label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
                            value="E:\codes\py39\\test-20230416b\\todo-songs",
                        )
                        inputs = gr.File(
                            file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
                        )
                    with gr.Row():
                        format1 = gr.Radio(
                            label=i18n("导出文件格式"),
                            choices=["wav", "flac", "mp3", "m4a"],
                            value="flac",
                            interactive=True,
                        )
                        but1 = gr.Button(i18n("转换"), variant="primary")
                        vc_output3 = gr.Textbox(label=i18n("输出信息"))
                    but1.click(
                        vc.vc_multi,
                        [
                            spk_item,
                            dir_input,
                            opt_input,
                            inputs,
                            vc_transform1,
                            f0method1,
                            file_index3,
                            file_index4,
                            # file_big_npy2,
                            index_rate2,
                            filter_radius1,
                            resample_sr1,
                            rms_mix_rate1,
                            protect1,
                            format1,
                        ],
                        [vc_output3],
                        api_name="infer_convert_batch",
                    )
            sid0.change(
                fn=vc.get_vc,
                inputs=[sid0, protect0, protect1],
                outputs=[spk_item, protect0, protect1, file_index2, file_index4],
            )
        with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
            with gr.Group():
                gr.Markdown(
                    value=i18n(
                        "人声伴奏分离批量处理, 使用UVR5模型。 <br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>模型分为三类: <br>1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点; <br>2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型; <br> 3、去混响、去延迟模型(by FoxJoy):<br>  (1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br>&emsp;(234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。<br>去混响/去延迟,附:<br>1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;<br>2、MDX-Net-Dereverb模型挺慢的;<br>3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。"
                    )
                )
                with gr.Row():
                    with gr.Column():
                        dir_wav_input = gr.Textbox(
                            label=i18n("输入待处理音频文件夹路径"),
                            value="E:\\codes\\py39\\test-20230416b\\todo-songs\\todo-songs",
                        )
                        wav_inputs = gr.File(
                            file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
                        )
                    with gr.Column():
                        model_choose = gr.Dropdown(label=i18n("模型"), choices=uvr5_names)
                        agg = gr.Slider(
                            minimum=0,
                            maximum=20,
                            step=1,
                            label="人声提取激进程度",
                            value=10,
                            interactive=True,
                            visible=False,  # 先不开放调整
                        )
                        opt_vocal_root = gr.Textbox(
                            label=i18n("指定输出主人声文件夹"), value="opt"
                        )
                        opt_ins_root = gr.Textbox(
                            label=i18n("指定输出非主人声文件夹"), value="opt"
                        )
                        format0 = gr.Radio(
                            label=i18n("导出文件格式"),
                            choices=["wav", "flac", "mp3", "m4a"],
                            value="flac",
                            interactive=True,
                        )
                    but2 = gr.Button(i18n("转换"), variant="primary")
                    vc_output4 = gr.Textbox(label=i18n("输出信息"))
                    but2.click(
                        uvr,
                        [
                            model_choose,
                            dir_wav_input,
                            opt_vocal_root,
                            wav_inputs,
                            opt_ins_root,
                            agg,
                            format0,
                        ],
                        [vc_output4],
                        api_name="uvr_convert",
                    )
        with gr.TabItem(i18n("训练")):
            gr.Markdown(
                value=i18n(
                    "step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. "
                )
            )
            with gr.Row():
                exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="mi-test")
                sr2 = gr.Radio(
                    label=i18n("目标采样率"),
                    choices=["40k", "48k"],
                    value="40k",
                    interactive=True,
                )
                if_f0_3 = gr.Radio(
                    label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
                    choices=[True, False],
                    value=True,
                    interactive=True,
                )
                version19 = gr.Radio(
                    label=i18n("版本"),
                    choices=["v1", "v2"],
                    value="v2",
                    interactive=True,
                    visible=True,
                )
                np7 = gr.Slider(
                    minimum=0,
                    maximum=config.n_cpu,
                    step=1,
                    label=i18n("提取音高和处理数据使用的CPU进程数"),
                    value=int(np.ceil(config.n_cpu / 1.5)),
                    interactive=True,
                )
            with gr.Group():  # 暂时单人的, 后面支持最多4人的#数据处理
                gr.Markdown(
                    value=i18n(
                        "step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. "
                    )
                )
                with gr.Row():
                    trainset_dir4 = gr.Textbox(
                        label=i18n("输入训练文件夹路径"), value="E:\\语音音频+标注\\米津玄师\\src"
                    )
                    spk_id5 = gr.Slider(
                        minimum=0,
                        maximum=4,
                        step=1,
                        label=i18n("请指定说话人id"),
                        value=0,
                        interactive=True,
                    )
                    but1 = gr.Button(i18n("处理数据"), variant="primary")
                    info1 = gr.Textbox(label=i18n("输出信息"), value="")
                    but1.click(
                        preprocess_dataset,
                        [trainset_dir4, exp_dir1, sr2, np7],
                        [info1],
                        api_name="train_preprocess",
                    )
            with gr.Group():
                gr.Markdown(value=i18n("step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)"))
                with gr.Row():
                    with gr.Column():
                        gpus6 = gr.Textbox(
                            label=i18n("以-分隔输入使用的卡号, 例如   0-1-2   使用卡0和卡1和卡2"),
                            value=gpus,
                            interactive=True,
                            visible=F0GPUVisible,
                        )
                        gpu_info9 = gr.Textbox(
                            label=i18n("显卡信息"), value=gpu_info, visible=F0GPUVisible
                        )
                    with gr.Column():
                        f0method8 = gr.Radio(
                            label=i18n(
                                "选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU"
                            ),
                            choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
                            value="rmvpe_gpu",
                            interactive=True,
                        )
                        gpus_rmvpe = gr.Textbox(
                            label=i18n(
                                "rmvpe卡号配置:以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程"
                            ),
                            value="%s-%s" % (gpus, gpus),
                            interactive=True,
                            visible=F0GPUVisible,
                        )
                    but2 = gr.Button(i18n("特征提取"), variant="primary")
                    info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
                    f0method8.change(
                        fn=change_f0_method,
                        inputs=[f0method8],
                        outputs=[gpus_rmvpe],
                    )
                    but2.click(
                        extract_f0_feature,
                        [
                            gpus6,
                            np7,
                            f0method8,
                            if_f0_3,
                            exp_dir1,
                            version19,
                            gpus_rmvpe,
                        ],
                        [info2],
                        api_name="train_extract_f0_feature",
                    )
            with gr.Group():
                gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引"))
                with gr.Row():
                    save_epoch10 = gr.Slider(
                        minimum=1,
                        maximum=50,
                        step=1,
                        label=i18n("保存频率save_every_epoch"),
                        value=5,
                        interactive=True,
                    )
                    total_epoch11 = gr.Slider(
                        minimum=2,
                        maximum=1000,
                        step=1,
                        label=i18n("总训练轮数total_epoch"),
                        value=20,
                        interactive=True,
                    )
                    batch_size12 = gr.Slider(
                        minimum=1,
                        maximum=40,
                        step=1,
                        label=i18n("每张显卡的batch_size"),
                        value=default_batch_size,
                        interactive=True,
                    )
                    if_save_latest13 = gr.Radio(
                        label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"),
                        choices=[i18n("是"), i18n("否")],
                        value=i18n("否"),
                        interactive=True,
                    )
                    if_cache_gpu17 = gr.Radio(
                        label=i18n(
                            "是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速"
                        ),
                        choices=[i18n("是"), i18n("否")],
                        value=i18n("否"),
                        interactive=True,
                    )
                    if_save_every_weights18 = gr.Radio(
                        label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"),
                        choices=[i18n("是"), i18n("否")],
                        value=i18n("否"),
                        interactive=True,
                    )
                with gr.Row():
                    pretrained_G14 = gr.Textbox(
                        label=i18n("加载预训练底模G路径"),
                        value="assets/pretrained_v2/f0G40k.pth",
                        interactive=True,
                    )
                    pretrained_D15 = gr.Textbox(
                        label=i18n("加载预训练底模D路径"),
                        value="assets/pretrained_v2/f0D40k.pth",
                        interactive=True,
                    )
                    sr2.change(
                        change_sr2,
                        [sr2, if_f0_3, version19],
                        [pretrained_G14, pretrained_D15],
                    )
                    version19.change(
                        change_version19,
                        [sr2, if_f0_3, version19],
                        [pretrained_G14, pretrained_D15, sr2],
                    )
                    if_f0_3.change(
                        change_f0,
                        [if_f0_3, sr2, version19],
                        [f0method8, pretrained_G14, pretrained_D15],
                    )
                    gpus16 = gr.Textbox(
                        label=i18n("以-分隔输入使用的卡号, 例如   0-1-2   使用卡0和卡1和卡2"),
                        value=gpus,
                        interactive=True,
                    )
                    but3 = gr.Button(i18n("训练模型"), variant="primary")
                    but4 = gr.Button(i18n("训练特征索引"), variant="primary")
                    but5 = gr.Button(i18n("一键训练"), variant="primary")
                    info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10)
                    but3.click(
                        click_train,
                        [
                            exp_dir1,
                            sr2,
                            if_f0_3,
                            spk_id5,
                            save_epoch10,
                            total_epoch11,
                            batch_size12,
                            if_save_latest13,
                            pretrained_G14,
                            pretrained_D15,
                            gpus16,
                            if_cache_gpu17,
                            if_save_every_weights18,
                            version19,
                        ],
                        info3,
                        api_name="train_start",
                    )
                    but4.click(train_index, [exp_dir1, version19], info3)
                    but5.click(
                        train1key,
                        [
                            exp_dir1,
                            sr2,
                            if_f0_3,
                            trainset_dir4,
                            spk_id5,
                            np7,
                            f0method8,
                            save_epoch10,
                            total_epoch11,
                            batch_size12,
                            if_save_latest13,
                            pretrained_G14,
                            pretrained_D15,
                            gpus16,
                            if_cache_gpu17,
                            if_save_every_weights18,
                            version19,
                            gpus_rmvpe,
                        ],
                        info3,
                        api_name="train_start_all",
                    )

        with gr.TabItem(i18n("ckpt处理")):
            with gr.Group():
                gr.Markdown(value=i18n("模型融合, 可用于测试音色融合"))
                with gr.Row():
                    ckpt_a = gr.Textbox(label=i18n("A模型路径"), value="", interactive=True)
                    ckpt_b = gr.Textbox(label=i18n("B模型路径"), value="", interactive=True)
                    alpha_a = gr.Slider(
                        minimum=0,
                        maximum=1,
                        label=i18n("A模型权重"),
                        value=0.5,
                        interactive=True,
                    )
                with gr.Row():
                    sr_ = gr.Radio(
                        label=i18n("目标采样率"),
                        choices=["40k", "48k"],
                        value="40k",
                        interactive=True,
                    )
                    if_f0_ = gr.Radio(
                        label=i18n("模型是否带音高指导"),
                        choices=[i18n("是"), i18n("否")],
                        value=i18n("是"),
                        interactive=True,
                    )
                    info__ = gr.Textbox(
                        label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True
                    )
                    name_to_save0 = gr.Textbox(
                        label=i18n("保存的模型名不带后缀"),
                        value="",
                        max_lines=1,
                        interactive=True,
                    )
                    version_2 = gr.Radio(
                        label=i18n("模型版本型号"),
                        choices=["v1", "v2"],
                        value="v1",
                        interactive=True,
                    )
                with gr.Row():
                    but6 = gr.Button(i18n("融合"), variant="primary")
                    info4 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
                but6.click(
                    merge,
                    [
                        ckpt_a,
                        ckpt_b,
                        alpha_a,
                        sr_,
                        if_f0_,
                        info__,
                        name_to_save0,
                        version_2,
                    ],
                    info4,
                    api_name="ckpt_merge",
                )  # def merge(path1,path2,alpha1,sr,f0,info):
            with gr.Group():
                gr.Markdown(value=i18n("修改模型信息(仅支持weights文件夹下提取的小模型文件)"))
                with gr.Row():
                    ckpt_path0 = gr.Textbox(
                        label=i18n("模型路径"), value="", interactive=True
                    )
                    info_ = gr.Textbox(
                        label=i18n("要改的模型信息"), value="", max_lines=8, interactive=True
                    )
                    name_to_save1 = gr.Textbox(
                        label=i18n("保存的文件名, 默认空为和源文件同名"),
                        value="",
                        max_lines=8,
                        interactive=True,
                    )
                with gr.Row():
                    but7 = gr.Button(i18n("修改"), variant="primary")
                    info5 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
                but7.click(
                    change_info,
                    [ckpt_path0, info_, name_to_save1],
                    info5,
                    api_name="ckpt_modify",
                )
            with gr.Group():
                gr.Markdown(value=i18n("查看模型信息(仅支持weights文件夹下提取的小模型文件)"))
                with gr.Row():
                    ckpt_path1 = gr.Textbox(
                        label=i18n("模型路径"), value="", interactive=True
                    )
                    but8 = gr.Button(i18n("查看"), variant="primary")
                    info6 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
                but8.click(show_info, [ckpt_path1], info6, api_name="ckpt_show")
            with gr.Group():
                gr.Markdown(
                    value=i18n(
                        "模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况"
                    )
                )
                with gr.Row():
                    ckpt_path2 = gr.Textbox(
                        label=i18n("模型路径"),
                        value="E:\\codes\\py39\\logs\\mi-test_f0_48k\\G_23333.pth",
                        interactive=True,
                    )
                    save_name = gr.Textbox(
                        label=i18n("保存名"), value="", interactive=True
                    )
                    sr__ = gr.Radio(
                        label=i18n("目标采样率"),
                        choices=["32k", "40k", "48k"],
                        value="40k",
                        interactive=True,
                    )
                    if_f0__ = gr.Radio(
                        label=i18n("模型是否带音高指导,1是0否"),
                        choices=["1", "0"],
                        value="1",
                        interactive=True,
                    )
                    version_1 = gr.Radio(
                        label=i18n("模型版本型号"),
                        choices=["v1", "v2"],
                        value="v2",
                        interactive=True,
                    )
                    info___ = gr.Textbox(
                        label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True
                    )
                    but9 = gr.Button(i18n("提取"), variant="primary")
                    info7 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
                    ckpt_path2.change(
                        change_info_, [ckpt_path2], [sr__, if_f0__, version_1]
                    )
                but9.click(
                    extract_small_model,
                    [ckpt_path2, save_name, sr__, if_f0__, info___, version_1],
                    info7,
                    api_name="ckpt_extract",
                )

        with gr.TabItem(i18n("Onnx导出")):
            with gr.Row():
                ckpt_dir = gr.Textbox(label=i18n("RVC模型路径"), value="", interactive=True)
            with gr.Row():
                onnx_dir = gr.Textbox(
                    label=i18n("Onnx输出路径"), value="", interactive=True
                )
            with gr.Row():
                infoOnnx = gr.Label(label="info")
            with gr.Row():
                butOnnx = gr.Button(i18n("导出Onnx模型"), variant="primary")
            butOnnx.click(
                export_onnx, [ckpt_dir, onnx_dir], infoOnnx, api_name="export_onnx"
            )

        tab_faq = i18n("常见问题解答")
        with gr.TabItem(tab_faq):
            try:
                if tab_faq == "常见问题解答":
                    with open("docs/cn/faq.md", "r", encoding="utf8") as f:
                        info = f.read()
                else:
                    with open("docs/en/faq_en.md", "r", encoding="utf8") as f:
                        info = f.read()
                gr.Markdown(value=info)
            except:
                gr.Markdown(traceback.format_exc())

    if config.iscolab:
        app.queue(concurrency_count=511, max_size=1022).launch(share=True)
    else:
        app.queue(concurrency_count=511, max_size=1022).launch(
            server_name="0.0.0.0",
            inbrowser=not config.noautoopen,
            server_port=config.listen_port,
            quiet=True,
        )