File size: 10,311 Bytes
66dbe5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import traceback
import logging

logger = logging.getLogger(__name__)

import numpy as np
import soundfile as sf
import torch
from io import BytesIO

from infer.lib.audio import load_audio, wav2
from infer.lib.infer_pack.models import (
    SynthesizerTrnMs256NSFsid,
    SynthesizerTrnMs256NSFsid_nono,
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono,
)
from infer.modules.vc.pipeline import Pipeline
from infer.modules.vc.utils import *


class VC:
    def __init__(self, config):
        self.n_spk = None
        self.tgt_sr = None
        self.net_g = None
        self.pipeline = None
        self.cpt = None
        self.version = None
        self.if_f0 = None
        self.version = None
        self.hubert_model = None

        self.config = config

    def get_vc(self, sid, *to_return_protect):
        logger.info("Get sid: " + sid)

        to_return_protect0 = {
            "visible": self.if_f0 != 0,
            "value": to_return_protect[0]
            if self.if_f0 != 0 and to_return_protect
            else 0.5,
            "__type__": "update",
        }
        to_return_protect1 = {
            "visible": self.if_f0 != 0,
            "value": to_return_protect[1]
            if self.if_f0 != 0 and to_return_protect
            else 0.33,
            "__type__": "update",
        }

        if sid == "" or sid == []:
            if self.hubert_model is not None:  # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
                logger.info("Clean model cache")
                del (
                    self.net_g,
                    self.n_spk,
                    self.vc,
                    self.hubert_model,
                    self.tgt_sr,
                )  # ,cpt
                self.hubert_model = (
                    self.net_g
                ) = self.n_spk = self.vc = self.hubert_model = self.tgt_sr = None
                if torch.cuda.is_available():
                    torch.cuda.empty_cache()
                ###楼下不这么折腾清理不干净
                self.if_f0 = self.cpt.get("f0", 1)
                self.version = self.cpt.get("version", "v1")
                if self.version == "v1":
                    if self.if_f0 == 1:
                        self.net_g = SynthesizerTrnMs256NSFsid(
                            *self.cpt["config"], is_half=self.config.is_half
                        )
                    else:
                        self.net_g = SynthesizerTrnMs256NSFsid_nono(*self.cpt["config"])
                elif self.version == "v2":
                    if self.if_f0 == 1:
                        self.net_g = SynthesizerTrnMs768NSFsid(
                            *self.cpt["config"], is_half=self.config.is_half
                        )
                    else:
                        self.net_g = SynthesizerTrnMs768NSFsid_nono(*self.cpt["config"])
                del self.net_g, self.cpt
                if torch.cuda.is_available():
                    torch.cuda.empty_cache()
            return (
                {"visible": False, "__type__": "update"},
                {
                    "visible": True,
                    "value": to_return_protect0,
                    "__type__": "update",
                },
                {
                    "visible": True,
                    "value": to_return_protect1,
                    "__type__": "update",
                },
                "",
                "",
            )
        person = f'{os.getenv("weight_root")}/{sid}'
        logger.info(f"Loading: {person}")

        self.cpt = torch.load(person, map_location="cpu")
        self.tgt_sr = self.cpt["config"][-1]
        self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
        self.if_f0 = self.cpt.get("f0", 1)
        self.version = self.cpt.get("version", "v1")

        synthesizer_class = {
            ("v1", 1): SynthesizerTrnMs256NSFsid,
            ("v1", 0): SynthesizerTrnMs256NSFsid_nono,
            ("v2", 1): SynthesizerTrnMs768NSFsid,
            ("v2", 0): SynthesizerTrnMs768NSFsid_nono,
        }

        self.net_g = synthesizer_class.get(
            (self.version, self.if_f0), SynthesizerTrnMs256NSFsid
        )(*self.cpt["config"], is_half=self.config.is_half)

        del self.net_g.enc_q

        self.net_g.load_state_dict(self.cpt["weight"], strict=False)
        self.net_g.eval().to(self.config.device)
        if self.config.is_half:
            self.net_g = self.net_g.half()
        else:
            self.net_g = self.net_g.float()

        self.pipeline = Pipeline(self.tgt_sr, self.config)
        n_spk = self.cpt["config"][-3]
        index = {"value": get_index_path_from_model(sid), "__type__": "update"}
        logger.info("Select index: " + index["value"])

        return (
            (
                {"visible": True, "maximum": n_spk, "__type__": "update"},
                to_return_protect0,
                to_return_protect1,
                index,
                index,
            )
            if to_return_protect
            else {"visible": True, "maximum": n_spk, "__type__": "update"}
        )

    def vc_single(
        self,
        sid,
        input_audio_path,
        f0_up_key,
        f0_file,
        f0_method,
        file_index,
        file_index2,
        index_rate,
        filter_radius,
        resample_sr,
        rms_mix_rate,
        protect,
    ):
        if input_audio_path is None:
            return "You need to upload an audio", None
        f0_up_key = int(f0_up_key)
        try:
            audio = load_audio(input_audio_path, 16000)
            audio_max = np.abs(audio).max() / 0.95
            if audio_max > 1:
                audio /= audio_max
            times = [0, 0, 0]

            if self.hubert_model is None:
                self.hubert_model = load_hubert(self.config)

            file_index = (
                (
                    file_index.strip(" ")
                    .strip('"')
                    .strip("\n")
                    .strip('"')
                    .strip(" ")
                    .replace("trained", "added")
                )
                if file_index != ""
                else file_index2
            )  # 防止小白写错,自动帮他替换掉

            audio_opt = self.pipeline.pipeline(
                self.hubert_model,
                self.net_g,
                sid,
                audio,
                input_audio_path,
                times,
                f0_up_key,
                f0_method,
                file_index,
                index_rate,
                self.if_f0,
                filter_radius,
                self.tgt_sr,
                resample_sr,
                rms_mix_rate,
                self.version,
                protect,
                f0_file,
            )
            if self.tgt_sr != resample_sr >= 16000:
                tgt_sr = resample_sr
            else:
                tgt_sr = self.tgt_sr
            index_info = (
                "Index:\n%s." % file_index
                if os.path.exists(file_index)
                else "Index not used."
            )
            return (
                "Success.\n%s\nTime:\nnpy: %.2fs, f0: %.2fs, infer: %.2fs."
                % (index_info, *times),
                (tgt_sr, audio_opt),
            )
        except:
            info = traceback.format_exc()
            logger.warn(info)
            return info, (None, None)

    def vc_multi(
        self,
        sid,
        dir_path,
        opt_root,
        paths,
        f0_up_key,
        f0_method,
        file_index,
        file_index2,
        index_rate,
        filter_radius,
        resample_sr,
        rms_mix_rate,
        protect,
        format1,
    ):
        try:
            dir_path = (
                dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
            )  # 防止小白拷路径头尾带了空格和"和回车
            opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
            os.makedirs(opt_root, exist_ok=True)
            try:
                if dir_path != "":
                    paths = [
                        os.path.join(dir_path, name) for name in os.listdir(dir_path)
                    ]
                else:
                    paths = [path.name for path in paths]
            except:
                traceback.print_exc()
                paths = [path.name for path in paths]
            infos = []
            for path in paths:
                info, opt = self.vc_single(
                    sid,
                    path,
                    f0_up_key,
                    None,
                    f0_method,
                    file_index,
                    file_index2,
                    # file_big_npy,
                    index_rate,
                    filter_radius,
                    resample_sr,
                    rms_mix_rate,
                    protect,
                )
                if "Success" in info:
                    try:
                        tgt_sr, audio_opt = opt
                        if format1 in ["wav", "flac"]:
                            sf.write(
                                "%s/%s.%s"
                                % (opt_root, os.path.basename(path), format1),
                                audio_opt,
                                tgt_sr,
                            )
                        else:
                            path = "%s/%s.%s" % (
                                opt_root,
                                os.path.basename(path),
                                format1,
                            )
                            with BytesIO() as wavf:
                                sf.write(wavf, audio_opt, tgt_sr, format="wav")
                                wavf.seek(0, 0)
                                with open(path, "wb") as outf:
                                    wav2(wavf, outf, format1)
                    except:
                        info += traceback.format_exc()
                infos.append("%s->%s" % (os.path.basename(path), info))
                yield "\n".join(infos)
            yield "\n".join(infos)
        except:
            yield traceback.format_exc()