Spaces:
Runtime error
Runtime error
Akash Chavda
commited on
Commit
·
ab2e354
1
Parent(s):
547826f
feat: update modal with new code
Browse files- .DS_Store +0 -0
- Dockerfile +3 -21
- GUI.py +1410 -0
- a.png +0 -0
- app.py +0 -0
- audios/somegirl.mp3 +0 -0
- audios/someguy.mp3 +0 -0
- audios/unachica.mp3 +0 -0
- audios/unchico.mp3 +0 -0
- configs/config.py +1 -4
- docker-compose.yml +1 -8
- docs/en/README.en.md +1 -30
- download_files.py +19 -0
- gui_v1.py +44 -108
- infer-web.py +0 -1
- infer/lib/audio.py +12 -23
- infer/lib/infer_pack/models.py +1 -4
- infer/lib/rmvpe.py +2 -5
- infer/modules/ipex/__init__.py +16 -28
- infer/modules/ipex/attention.py +33 -94
- infer/modules/ipex/gradscaler.py +11 -19
- infer/modules/ipex/hijacks.py +92 -253
- infer/modules/train/train.py +1 -4
- infer/modules/vc/modules.py +9 -10
- requirements-dml.txt +2 -0
- requirements.txt +8 -2
- tools/rvc_for_realtime.py +12 -6
- tools/torchgate/utils.py +2 -6
.DS_Store
ADDED
Binary file (10.2 kB). View file
|
|
Dockerfile
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
# syntax=docker/dockerfile:1
|
2 |
|
3 |
-
FROM
|
4 |
|
5 |
EXPOSE 7865
|
6 |
|
@@ -8,27 +8,9 @@ WORKDIR /app
|
|
8 |
|
9 |
COPY . .
|
10 |
|
11 |
-
|
12 |
-
RUN apt-get update && \
|
13 |
-
apt-get install -y -qq ffmpeg aria2 && apt clean && \
|
14 |
-
apt-get install -y software-properties-common && \
|
15 |
-
apt-get clean && \
|
16 |
-
rm -rf /var/lib/apt/lists/*
|
17 |
|
18 |
-
|
19 |
-
RUN add-apt-repository ppa:deadsnakes/ppa
|
20 |
-
|
21 |
-
# Install Python 3.9 and pip
|
22 |
-
RUN apt-get update && \
|
23 |
-
apt-get install -y build-essential python-dev python3-dev python3.9-distutils python3.9-dev python3.9 curl && \
|
24 |
-
apt-get clean && \
|
25 |
-
update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.9 1 && \
|
26 |
-
curl https://bootstrap.pypa.io/get-pip.py | python3.9
|
27 |
-
|
28 |
-
# Set Python 3.9 as the default
|
29 |
-
RUN update-alternatives --install /usr/bin/python python /usr/bin/python3.9 1
|
30 |
-
|
31 |
-
RUN python3 -m pip install --no-cache-dir -r requirements.txt
|
32 |
|
33 |
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/D40k.pth -d assets/pretrained_v2/ -o D40k.pth
|
34 |
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/G40k.pth -d assets/pretrained_v2/ -o G40k.pth
|
|
|
1 |
# syntax=docker/dockerfile:1
|
2 |
|
3 |
+
FROM python:3.10-bullseye
|
4 |
|
5 |
EXPOSE 7865
|
6 |
|
|
|
8 |
|
9 |
COPY . .
|
10 |
|
11 |
+
RUN apt update && apt install -y -qq ffmpeg aria2 && apt clean
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
RUN pip3 install --no-cache-dir -r requirements.txt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/D40k.pth -d assets/pretrained_v2/ -o D40k.pth
|
16 |
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/G40k.pth -d assets/pretrained_v2/ -o G40k.pth
|
GUI.py
ADDED
@@ -0,0 +1,1410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, sys
|
2 |
+
import datetime, subprocess
|
3 |
+
from mega import Mega
|
4 |
+
now_dir = os.getcwd()
|
5 |
+
sys.path.append(now_dir)
|
6 |
+
import logging
|
7 |
+
import shutil
|
8 |
+
import threading
|
9 |
+
import traceback
|
10 |
+
import warnings
|
11 |
+
from random import shuffle
|
12 |
+
from subprocess import Popen
|
13 |
+
from time import sleep
|
14 |
+
import json
|
15 |
+
import pathlib
|
16 |
+
|
17 |
+
import fairseq
|
18 |
+
import faiss
|
19 |
+
import gradio as gr
|
20 |
+
import numpy as np
|
21 |
+
import torch
|
22 |
+
from dotenv import load_dotenv
|
23 |
+
from sklearn.cluster import MiniBatchKMeans
|
24 |
+
|
25 |
+
from configs.config import Config
|
26 |
+
from i18n.i18n import I18nAuto
|
27 |
+
from infer.lib.train.process_ckpt import (
|
28 |
+
change_info,
|
29 |
+
extract_small_model,
|
30 |
+
merge,
|
31 |
+
show_info,
|
32 |
+
)
|
33 |
+
from infer.modules.uvr5.modules import uvr
|
34 |
+
from infer.modules.vc.modules import VC
|
35 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
36 |
+
|
37 |
+
logger = logging.getLogger(__name__)
|
38 |
+
|
39 |
+
tmp = os.path.join(now_dir, "TEMP")
|
40 |
+
shutil.rmtree(tmp, ignore_errors=True)
|
41 |
+
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
|
42 |
+
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
|
43 |
+
os.makedirs(tmp, exist_ok=True)
|
44 |
+
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
|
45 |
+
os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True)
|
46 |
+
os.environ["TEMP"] = tmp
|
47 |
+
warnings.filterwarnings("ignore")
|
48 |
+
torch.manual_seed(114514)
|
49 |
+
|
50 |
+
|
51 |
+
load_dotenv()
|
52 |
+
config = Config()
|
53 |
+
vc = VC(config)
|
54 |
+
|
55 |
+
if config.dml == True:
|
56 |
+
|
57 |
+
def forward_dml(ctx, x, scale):
|
58 |
+
ctx.scale = scale
|
59 |
+
res = x.clone().detach()
|
60 |
+
return res
|
61 |
+
|
62 |
+
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
|
63 |
+
i18n = I18nAuto()
|
64 |
+
logger.info(i18n)
|
65 |
+
# 判断是否有能用来训练和加速推理的N卡
|
66 |
+
ngpu = torch.cuda.device_count()
|
67 |
+
gpu_infos = []
|
68 |
+
mem = []
|
69 |
+
if_gpu_ok = False
|
70 |
+
|
71 |
+
if torch.cuda.is_available() or ngpu != 0:
|
72 |
+
for i in range(ngpu):
|
73 |
+
gpu_name = torch.cuda.get_device_name(i)
|
74 |
+
if any(
|
75 |
+
value in gpu_name.upper()
|
76 |
+
for value in [
|
77 |
+
"10",
|
78 |
+
"16",
|
79 |
+
"20",
|
80 |
+
"30",
|
81 |
+
"40",
|
82 |
+
"A2",
|
83 |
+
"A3",
|
84 |
+
"A4",
|
85 |
+
"P4",
|
86 |
+
"A50",
|
87 |
+
"500",
|
88 |
+
"A60",
|
89 |
+
"70",
|
90 |
+
"80",
|
91 |
+
"90",
|
92 |
+
"M4",
|
93 |
+
"T4",
|
94 |
+
"TITAN",
|
95 |
+
]
|
96 |
+
):
|
97 |
+
# A10#A100#V100#A40#P40#M40#K80#A4500
|
98 |
+
if_gpu_ok = True # 至少有一张能用的N卡
|
99 |
+
gpu_infos.append("%s\t%s" % (i, gpu_name))
|
100 |
+
mem.append(
|
101 |
+
int(
|
102 |
+
torch.cuda.get_device_properties(i).total_memory
|
103 |
+
/ 1024
|
104 |
+
/ 1024
|
105 |
+
/ 1024
|
106 |
+
+ 0.4
|
107 |
+
)
|
108 |
+
)
|
109 |
+
if if_gpu_ok and len(gpu_infos) > 0:
|
110 |
+
gpu_info = "\n".join(gpu_infos)
|
111 |
+
default_batch_size = min(mem) // 2
|
112 |
+
else:
|
113 |
+
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
|
114 |
+
default_batch_size = 1
|
115 |
+
gpus = "-".join([i[0] for i in gpu_infos])
|
116 |
+
|
117 |
+
|
118 |
+
class ToolButton(gr.Button, gr.components.FormComponent):
|
119 |
+
"""Small button with single emoji as text, fits inside gradio forms"""
|
120 |
+
|
121 |
+
def __init__(self, **kwargs):
|
122 |
+
super().__init__(variant="tool", **kwargs)
|
123 |
+
|
124 |
+
def get_block_name(self):
|
125 |
+
return "button"
|
126 |
+
|
127 |
+
|
128 |
+
weight_root = os.getenv("weight_root")
|
129 |
+
weight_uvr5_root = os.getenv("weight_uvr5_root")
|
130 |
+
index_root = os.getenv("index_root")
|
131 |
+
|
132 |
+
names = []
|
133 |
+
for name in os.listdir(weight_root):
|
134 |
+
if name.endswith(".pth"):
|
135 |
+
names.append(name)
|
136 |
+
index_paths = []
|
137 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
138 |
+
for name in files:
|
139 |
+
if name.endswith(".index") and "trained" not in name:
|
140 |
+
index_paths.append("%s/%s" % (root, name))
|
141 |
+
uvr5_names = []
|
142 |
+
for name in os.listdir(weight_uvr5_root):
|
143 |
+
if name.endswith(".pth") or "onnx" in name:
|
144 |
+
uvr5_names.append(name.replace(".pth", ""))
|
145 |
+
|
146 |
+
|
147 |
+
def change_choices():
|
148 |
+
names = []
|
149 |
+
for name in os.listdir(weight_root):
|
150 |
+
if name.endswith(".pth"):
|
151 |
+
names.append(name)
|
152 |
+
index_paths = []
|
153 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
154 |
+
for name in files:
|
155 |
+
if name.endswith(".index") and "trained" not in name:
|
156 |
+
index_paths.append("%s/%s" % (root, name))
|
157 |
+
audio_files=[]
|
158 |
+
for filename in os.listdir("./audios"):
|
159 |
+
if filename.endswith(('.wav','.mp3','.ogg')):
|
160 |
+
audio_files.append('./audios/'+filename)
|
161 |
+
return {"choices": sorted(names), "__type__": "update"}, {
|
162 |
+
"choices": sorted(index_paths),
|
163 |
+
"__type__": "update",
|
164 |
+
}, {"choices": sorted(audio_files), "__type__": "update"}
|
165 |
+
|
166 |
+
def clean():
|
167 |
+
return {"value": "", "__type__": "update"}
|
168 |
+
|
169 |
+
|
170 |
+
def export_onnx():
|
171 |
+
from infer.modules.onnx.export import export_onnx as eo
|
172 |
+
|
173 |
+
eo()
|
174 |
+
|
175 |
+
|
176 |
+
sr_dict = {
|
177 |
+
"32k": 32000,
|
178 |
+
"40k": 40000,
|
179 |
+
"48k": 48000,
|
180 |
+
}
|
181 |
+
|
182 |
+
|
183 |
+
def if_done(done, p):
|
184 |
+
while 1:
|
185 |
+
if p.poll() is None:
|
186 |
+
sleep(0.5)
|
187 |
+
else:
|
188 |
+
break
|
189 |
+
done[0] = True
|
190 |
+
|
191 |
+
|
192 |
+
def if_done_multi(done, ps):
|
193 |
+
while 1:
|
194 |
+
# poll==None代表进程未结束
|
195 |
+
# 只要有一个进程未结束都不停
|
196 |
+
flag = 1
|
197 |
+
for p in ps:
|
198 |
+
if p.poll() is None:
|
199 |
+
flag = 0
|
200 |
+
sleep(0.5)
|
201 |
+
break
|
202 |
+
if flag == 1:
|
203 |
+
break
|
204 |
+
done[0] = True
|
205 |
+
|
206 |
+
|
207 |
+
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
|
208 |
+
sr = sr_dict[sr]
|
209 |
+
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
210 |
+
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
|
211 |
+
f.close()
|
212 |
+
per = 3.0 if config.is_half else 3.7
|
213 |
+
cmd = '"%s" infer/modules/train/preprocess.py "%s" %s %s "%s/logs/%s" %s %.1f' % (
|
214 |
+
config.python_cmd,
|
215 |
+
trainset_dir,
|
216 |
+
sr,
|
217 |
+
n_p,
|
218 |
+
now_dir,
|
219 |
+
exp_dir,
|
220 |
+
config.noparallel,
|
221 |
+
per,
|
222 |
+
)
|
223 |
+
logger.info(cmd)
|
224 |
+
p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
|
225 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
226 |
+
done = [False]
|
227 |
+
threading.Thread(
|
228 |
+
target=if_done,
|
229 |
+
args=(
|
230 |
+
done,
|
231 |
+
p,
|
232 |
+
),
|
233 |
+
).start()
|
234 |
+
while 1:
|
235 |
+
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
236 |
+
yield (f.read())
|
237 |
+
sleep(1)
|
238 |
+
if done[0]:
|
239 |
+
break
|
240 |
+
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
241 |
+
log = f.read()
|
242 |
+
logger.info(log)
|
243 |
+
yield log
|
244 |
+
|
245 |
+
|
246 |
+
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
|
247 |
+
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvpe):
|
248 |
+
gpus = gpus.split("-")
|
249 |
+
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
250 |
+
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
|
251 |
+
f.close()
|
252 |
+
if if_f0:
|
253 |
+
if f0method != "rmvpe_gpu":
|
254 |
+
cmd = (
|
255 |
+
'"%s" infer/modules/train/extract/extract_f0_print.py "%s/logs/%s" %s %s'
|
256 |
+
% (
|
257 |
+
config.python_cmd,
|
258 |
+
now_dir,
|
259 |
+
exp_dir,
|
260 |
+
n_p,
|
261 |
+
f0method,
|
262 |
+
)
|
263 |
+
)
|
264 |
+
logger.info(cmd)
|
265 |
+
p = Popen(
|
266 |
+
cmd, shell=True, cwd=now_dir
|
267 |
+
) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
|
268 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
269 |
+
done = [False]
|
270 |
+
threading.Thread(
|
271 |
+
target=if_done,
|
272 |
+
args=(
|
273 |
+
done,
|
274 |
+
p,
|
275 |
+
),
|
276 |
+
).start()
|
277 |
+
else:
|
278 |
+
if gpus_rmvpe != "-":
|
279 |
+
gpus_rmvpe = gpus_rmvpe.split("-")
|
280 |
+
leng = len(gpus_rmvpe)
|
281 |
+
ps = []
|
282 |
+
for idx, n_g in enumerate(gpus_rmvpe):
|
283 |
+
cmd = (
|
284 |
+
'"%s" infer/modules/train/extract/extract_f0_rmvpe.py %s %s %s "%s/logs/%s" %s '
|
285 |
+
% (
|
286 |
+
config.python_cmd,
|
287 |
+
leng,
|
288 |
+
idx,
|
289 |
+
n_g,
|
290 |
+
now_dir,
|
291 |
+
exp_dir,
|
292 |
+
config.is_half,
|
293 |
+
)
|
294 |
+
)
|
295 |
+
logger.info(cmd)
|
296 |
+
p = Popen(
|
297 |
+
cmd, shell=True, cwd=now_dir
|
298 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
299 |
+
ps.append(p)
|
300 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
301 |
+
done = [False]
|
302 |
+
threading.Thread(
|
303 |
+
target=if_done_multi, #
|
304 |
+
args=(
|
305 |
+
done,
|
306 |
+
ps,
|
307 |
+
),
|
308 |
+
).start()
|
309 |
+
else:
|
310 |
+
cmd = (
|
311 |
+
config.python_cmd
|
312 |
+
+ ' infer/modules/train/extract/extract_f0_rmvpe_dml.py "%s/logs/%s" '
|
313 |
+
% (
|
314 |
+
now_dir,
|
315 |
+
exp_dir,
|
316 |
+
)
|
317 |
+
)
|
318 |
+
logger.info(cmd)
|
319 |
+
p = Popen(
|
320 |
+
cmd, shell=True, cwd=now_dir
|
321 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
322 |
+
p.wait()
|
323 |
+
done = [True]
|
324 |
+
while 1:
|
325 |
+
with open(
|
326 |
+
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
|
327 |
+
) as f:
|
328 |
+
yield (f.read())
|
329 |
+
sleep(1)
|
330 |
+
if done[0]:
|
331 |
+
break
|
332 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
333 |
+
log = f.read()
|
334 |
+
logger.info(log)
|
335 |
+
yield log
|
336 |
+
####对不同part分别开多进程
|
337 |
+
"""
|
338 |
+
n_part=int(sys.argv[1])
|
339 |
+
i_part=int(sys.argv[2])
|
340 |
+
i_gpu=sys.argv[3]
|
341 |
+
exp_dir=sys.argv[4]
|
342 |
+
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
|
343 |
+
"""
|
344 |
+
leng = len(gpus)
|
345 |
+
ps = []
|
346 |
+
for idx, n_g in enumerate(gpus):
|
347 |
+
cmd = (
|
348 |
+
'"%s" infer/modules/train/extract_feature_print.py %s %s %s %s "%s/logs/%s" %s'
|
349 |
+
% (
|
350 |
+
config.python_cmd,
|
351 |
+
config.device,
|
352 |
+
leng,
|
353 |
+
idx,
|
354 |
+
n_g,
|
355 |
+
now_dir,
|
356 |
+
exp_dir,
|
357 |
+
version19,
|
358 |
+
)
|
359 |
+
)
|
360 |
+
logger.info(cmd)
|
361 |
+
p = Popen(
|
362 |
+
cmd, shell=True, cwd=now_dir
|
363 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
364 |
+
ps.append(p)
|
365 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
366 |
+
done = [False]
|
367 |
+
threading.Thread(
|
368 |
+
target=if_done_multi,
|
369 |
+
args=(
|
370 |
+
done,
|
371 |
+
ps,
|
372 |
+
),
|
373 |
+
).start()
|
374 |
+
while 1:
|
375 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
376 |
+
yield (f.read())
|
377 |
+
sleep(1)
|
378 |
+
if done[0]:
|
379 |
+
break
|
380 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
381 |
+
log = f.read()
|
382 |
+
logger.info(log)
|
383 |
+
yield log
|
384 |
+
|
385 |
+
|
386 |
+
def get_pretrained_models(path_str, f0_str, sr2):
|
387 |
+
if_pretrained_generator_exist = os.access(
|
388 |
+
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
389 |
+
)
|
390 |
+
if_pretrained_discriminator_exist = os.access(
|
391 |
+
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
392 |
+
)
|
393 |
+
if not if_pretrained_generator_exist:
|
394 |
+
logger.warn(
|
395 |
+
"assets/pretrained%s/%sG%s.pth not exist, will not use pretrained model",
|
396 |
+
path_str,
|
397 |
+
f0_str,
|
398 |
+
sr2,
|
399 |
+
)
|
400 |
+
if not if_pretrained_discriminator_exist:
|
401 |
+
logger.warn(
|
402 |
+
"assets/pretrained%s/%sD%s.pth not exist, will not use pretrained model",
|
403 |
+
path_str,
|
404 |
+
f0_str,
|
405 |
+
sr2,
|
406 |
+
)
|
407 |
+
return (
|
408 |
+
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)
|
409 |
+
if if_pretrained_generator_exist
|
410 |
+
else "",
|
411 |
+
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)
|
412 |
+
if if_pretrained_discriminator_exist
|
413 |
+
else "",
|
414 |
+
)
|
415 |
+
|
416 |
+
|
417 |
+
def change_sr2(sr2, if_f0_3, version19):
|
418 |
+
path_str = "" if version19 == "v1" else "_v2"
|
419 |
+
f0_str = "f0" if if_f0_3 else ""
|
420 |
+
return get_pretrained_models(path_str, f0_str, sr2)
|
421 |
+
|
422 |
+
|
423 |
+
def change_version19(sr2, if_f0_3, version19):
|
424 |
+
path_str = "" if version19 == "v1" else "_v2"
|
425 |
+
if sr2 == "32k" and version19 == "v1":
|
426 |
+
sr2 = "40k"
|
427 |
+
to_return_sr2 = (
|
428 |
+
{"choices": ["40k", "48k"], "__type__": "update", "value": sr2}
|
429 |
+
if version19 == "v1"
|
430 |
+
else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2}
|
431 |
+
)
|
432 |
+
f0_str = "f0" if if_f0_3 else ""
|
433 |
+
return (
|
434 |
+
*get_pretrained_models(path_str, f0_str, sr2),
|
435 |
+
to_return_sr2,
|
436 |
+
)
|
437 |
+
|
438 |
+
|
439 |
+
def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15
|
440 |
+
path_str = "" if version19 == "v1" else "_v2"
|
441 |
+
return (
|
442 |
+
{"visible": if_f0_3, "__type__": "update"},
|
443 |
+
*get_pretrained_models(path_str, "f0", sr2),
|
444 |
+
)
|
445 |
+
|
446 |
+
|
447 |
+
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
|
448 |
+
def click_train(
|
449 |
+
exp_dir1,
|
450 |
+
sr2,
|
451 |
+
if_f0_3,
|
452 |
+
spk_id5,
|
453 |
+
save_epoch10,
|
454 |
+
total_epoch11,
|
455 |
+
batch_size12,
|
456 |
+
if_save_latest13,
|
457 |
+
pretrained_G14,
|
458 |
+
pretrained_D15,
|
459 |
+
gpus16,
|
460 |
+
if_cache_gpu17,
|
461 |
+
if_save_every_weights18,
|
462 |
+
version19,
|
463 |
+
):
|
464 |
+
# 生成filelist
|
465 |
+
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
466 |
+
os.makedirs(exp_dir, exist_ok=True)
|
467 |
+
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
468 |
+
feature_dir = (
|
469 |
+
"%s/3_feature256" % (exp_dir)
|
470 |
+
if version19 == "v1"
|
471 |
+
else "%s/3_feature768" % (exp_dir)
|
472 |
+
)
|
473 |
+
if if_f0_3:
|
474 |
+
f0_dir = "%s/2a_f0" % (exp_dir)
|
475 |
+
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
476 |
+
names = (
|
477 |
+
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
478 |
+
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
479 |
+
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
480 |
+
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
481 |
+
)
|
482 |
+
else:
|
483 |
+
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
484 |
+
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
485 |
+
)
|
486 |
+
opt = []
|
487 |
+
for name in names:
|
488 |
+
if if_f0_3:
|
489 |
+
opt.append(
|
490 |
+
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
491 |
+
% (
|
492 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
493 |
+
name,
|
494 |
+
feature_dir.replace("\\", "\\\\"),
|
495 |
+
name,
|
496 |
+
f0_dir.replace("\\", "\\\\"),
|
497 |
+
name,
|
498 |
+
f0nsf_dir.replace("\\", "\\\\"),
|
499 |
+
name,
|
500 |
+
spk_id5,
|
501 |
+
)
|
502 |
+
)
|
503 |
+
else:
|
504 |
+
opt.append(
|
505 |
+
"%s/%s.wav|%s/%s.npy|%s"
|
506 |
+
% (
|
507 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
508 |
+
name,
|
509 |
+
feature_dir.replace("\\", "\\\\"),
|
510 |
+
name,
|
511 |
+
spk_id5,
|
512 |
+
)
|
513 |
+
)
|
514 |
+
fea_dim = 256 if version19 == "v1" else 768
|
515 |
+
if if_f0_3:
|
516 |
+
for _ in range(2):
|
517 |
+
opt.append(
|
518 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
519 |
+
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
520 |
+
)
|
521 |
+
else:
|
522 |
+
for _ in range(2):
|
523 |
+
opt.append(
|
524 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
525 |
+
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
526 |
+
)
|
527 |
+
shuffle(opt)
|
528 |
+
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
529 |
+
f.write("\n".join(opt))
|
530 |
+
logger.debug("Write filelist done")
|
531 |
+
# 生成config#无需生成config
|
532 |
+
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
|
533 |
+
logger.info("Use gpus: %s", str(gpus16))
|
534 |
+
if pretrained_G14 == "":
|
535 |
+
logger.info("No pretrained Generator")
|
536 |
+
if pretrained_D15 == "":
|
537 |
+
logger.info("No pretrained Discriminator")
|
538 |
+
if version19 == "v1" or sr2 == "40k":
|
539 |
+
config_path = "v1/%s.json" % sr2
|
540 |
+
else:
|
541 |
+
config_path = "v2/%s.json" % sr2
|
542 |
+
config_save_path = os.path.join(exp_dir, "config.json")
|
543 |
+
if not pathlib.Path(config_save_path).exists():
|
544 |
+
with open(config_save_path, "w", encoding="utf-8") as f:
|
545 |
+
json.dump(
|
546 |
+
config.json_config[config_path],
|
547 |
+
f,
|
548 |
+
ensure_ascii=False,
|
549 |
+
indent=4,
|
550 |
+
sort_keys=True,
|
551 |
+
)
|
552 |
+
f.write("\n")
|
553 |
+
if gpus16:
|
554 |
+
cmd = (
|
555 |
+
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
|
556 |
+
% (
|
557 |
+
config.python_cmd,
|
558 |
+
exp_dir1,
|
559 |
+
sr2,
|
560 |
+
1 if if_f0_3 else 0,
|
561 |
+
batch_size12,
|
562 |
+
gpus16,
|
563 |
+
total_epoch11,
|
564 |
+
save_epoch10,
|
565 |
+
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
566 |
+
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
567 |
+
1 if if_save_latest13 == i18n("是") else 0,
|
568 |
+
1 if if_cache_gpu17 == i18n("是") else 0,
|
569 |
+
1 if if_save_every_weights18 == i18n("是") else 0,
|
570 |
+
version19,
|
571 |
+
)
|
572 |
+
)
|
573 |
+
else:
|
574 |
+
cmd = (
|
575 |
+
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
|
576 |
+
% (
|
577 |
+
config.python_cmd,
|
578 |
+
exp_dir1,
|
579 |
+
sr2,
|
580 |
+
1 if if_f0_3 else 0,
|
581 |
+
batch_size12,
|
582 |
+
total_epoch11,
|
583 |
+
save_epoch10,
|
584 |
+
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
585 |
+
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
586 |
+
1 if if_save_latest13 == i18n("是") else 0,
|
587 |
+
1 if if_cache_gpu17 == i18n("是") else 0,
|
588 |
+
1 if if_save_every_weights18 == i18n("是") else 0,
|
589 |
+
version19,
|
590 |
+
)
|
591 |
+
)
|
592 |
+
logger.info(cmd)
|
593 |
+
p = Popen(cmd, shell=True, cwd=now_dir)
|
594 |
+
p.wait()
|
595 |
+
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
|
596 |
+
|
597 |
+
|
598 |
+
# but4.click(train_index, [exp_dir1], info3)
|
599 |
+
def train_index(exp_dir1, version19):
|
600 |
+
# exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
601 |
+
exp_dir = "logs/%s" % (exp_dir1)
|
602 |
+
os.makedirs(exp_dir, exist_ok=True)
|
603 |
+
feature_dir = (
|
604 |
+
"%s/3_feature256" % (exp_dir)
|
605 |
+
if version19 == "v1"
|
606 |
+
else "%s/3_feature768" % (exp_dir)
|
607 |
+
)
|
608 |
+
if not os.path.exists(feature_dir):
|
609 |
+
return "请先进行特征提取!"
|
610 |
+
listdir_res = list(os.listdir(feature_dir))
|
611 |
+
if len(listdir_res) == 0:
|
612 |
+
return "请先进行特征提取!"
|
613 |
+
infos = []
|
614 |
+
npys = []
|
615 |
+
for name in sorted(listdir_res):
|
616 |
+
phone = np.load("%s/%s" % (feature_dir, name))
|
617 |
+
npys.append(phone)
|
618 |
+
big_npy = np.concatenate(npys, 0)
|
619 |
+
big_npy_idx = np.arange(big_npy.shape[0])
|
620 |
+
np.random.shuffle(big_npy_idx)
|
621 |
+
big_npy = big_npy[big_npy_idx]
|
622 |
+
if big_npy.shape[0] > 2e5:
|
623 |
+
infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0])
|
624 |
+
yield "\n".join(infos)
|
625 |
+
try:
|
626 |
+
big_npy = (
|
627 |
+
MiniBatchKMeans(
|
628 |
+
n_clusters=10000,
|
629 |
+
verbose=True,
|
630 |
+
batch_size=256 * config.n_cpu,
|
631 |
+
compute_labels=False,
|
632 |
+
init="random",
|
633 |
+
)
|
634 |
+
.fit(big_npy)
|
635 |
+
.cluster_centers_
|
636 |
+
)
|
637 |
+
except:
|
638 |
+
info = traceback.format_exc()
|
639 |
+
logger.info(info)
|
640 |
+
infos.append(info)
|
641 |
+
yield "\n".join(infos)
|
642 |
+
|
643 |
+
np.save("%s/total_fea.npy" % exp_dir, big_npy)
|
644 |
+
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
645 |
+
infos.append("%s,%s" % (big_npy.shape, n_ivf))
|
646 |
+
yield "\n".join(infos)
|
647 |
+
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
648 |
+
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
|
649 |
+
infos.append("training")
|
650 |
+
yield "\n".join(infos)
|
651 |
+
index_ivf = faiss.extract_index_ivf(index) #
|
652 |
+
index_ivf.nprobe = 1
|
653 |
+
index.train(big_npy)
|
654 |
+
faiss.write_index(
|
655 |
+
index,
|
656 |
+
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
657 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
658 |
+
)
|
659 |
+
|
660 |
+
infos.append("adding")
|
661 |
+
yield "\n".join(infos)
|
662 |
+
batch_size_add = 8192
|
663 |
+
for i in range(0, big_npy.shape[0], batch_size_add):
|
664 |
+
index.add(big_npy[i : i + batch_size_add])
|
665 |
+
faiss.write_index(
|
666 |
+
index,
|
667 |
+
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
668 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
669 |
+
)
|
670 |
+
infos.append(
|
671 |
+
"成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
672 |
+
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
|
673 |
+
)
|
674 |
+
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
|
675 |
+
# infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
|
676 |
+
yield "\n".join(infos)
|
677 |
+
|
678 |
+
|
679 |
+
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
|
680 |
+
def train1key(
|
681 |
+
exp_dir1,
|
682 |
+
sr2,
|
683 |
+
if_f0_3,
|
684 |
+
trainset_dir4,
|
685 |
+
spk_id5,
|
686 |
+
np7,
|
687 |
+
f0method8,
|
688 |
+
save_epoch10,
|
689 |
+
total_epoch11,
|
690 |
+
batch_size12,
|
691 |
+
if_save_latest13,
|
692 |
+
pretrained_G14,
|
693 |
+
pretrained_D15,
|
694 |
+
gpus16,
|
695 |
+
if_cache_gpu17,
|
696 |
+
if_save_every_weights18,
|
697 |
+
version19,
|
698 |
+
gpus_rmvpe,
|
699 |
+
):
|
700 |
+
infos = []
|
701 |
+
|
702 |
+
def get_info_str(strr):
|
703 |
+
infos.append(strr)
|
704 |
+
return "\n".join(infos)
|
705 |
+
|
706 |
+
####### step1:处理数据
|
707 |
+
yield get_info_str(i18n("step1:正在处理数据"))
|
708 |
+
[get_info_str(_) for _ in preprocess_dataset(trainset_dir4, exp_dir1, sr2, np7)]
|
709 |
+
|
710 |
+
####### step2a:提取音高
|
711 |
+
yield get_info_str(i18n("step2:正在提取音高&正在提取特征"))
|
712 |
+
[
|
713 |
+
get_info_str(_)
|
714 |
+
for _ in extract_f0_feature(
|
715 |
+
gpus16, np7, f0method8, if_f0_3, exp_dir1, version19, gpus_rmvpe
|
716 |
+
)
|
717 |
+
]
|
718 |
+
|
719 |
+
####### step3a:训练模型
|
720 |
+
yield get_info_str(i18n("step3a:正在训练模型"))
|
721 |
+
click_train(
|
722 |
+
exp_dir1,
|
723 |
+
sr2,
|
724 |
+
if_f0_3,
|
725 |
+
spk_id5,
|
726 |
+
save_epoch10,
|
727 |
+
total_epoch11,
|
728 |
+
batch_size12,
|
729 |
+
if_save_latest13,
|
730 |
+
pretrained_G14,
|
731 |
+
pretrained_D15,
|
732 |
+
gpus16,
|
733 |
+
if_cache_gpu17,
|
734 |
+
if_save_every_weights18,
|
735 |
+
version19,
|
736 |
+
)
|
737 |
+
yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"))
|
738 |
+
|
739 |
+
####### step3b:训练索引
|
740 |
+
[get_info_str(_) for _ in train_index(exp_dir1, version19)]
|
741 |
+
yield get_info_str(i18n("全流程结束!"))
|
742 |
+
|
743 |
+
|
744 |
+
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
|
745 |
+
def change_info_(ckpt_path):
|
746 |
+
if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")):
|
747 |
+
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
748 |
+
try:
|
749 |
+
with open(
|
750 |
+
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
|
751 |
+
) as f:
|
752 |
+
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
|
753 |
+
sr, f0 = info["sample_rate"], info["if_f0"]
|
754 |
+
version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
|
755 |
+
return sr, str(f0), version
|
756 |
+
except:
|
757 |
+
traceback.print_exc()
|
758 |
+
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
759 |
+
|
760 |
+
|
761 |
+
F0GPUVisible = config.dml == False
|
762 |
+
|
763 |
+
|
764 |
+
def change_f0_method(f0method8):
|
765 |
+
if f0method8 == "rmvpe_gpu":
|
766 |
+
visible = F0GPUVisible
|
767 |
+
else:
|
768 |
+
visible = False
|
769 |
+
return {"visible": visible, "__type__": "update"}
|
770 |
+
|
771 |
+
def find_model():
|
772 |
+
if len(names) > 0:
|
773 |
+
vc.get_vc(sorted(names)[0],None,None)
|
774 |
+
return sorted(names)[0]
|
775 |
+
else:
|
776 |
+
try:
|
777 |
+
gr.Info("Do not forget to choose a model.")
|
778 |
+
except:
|
779 |
+
pass
|
780 |
+
return ''
|
781 |
+
|
782 |
+
def find_audios(index=False):
|
783 |
+
audio_files=[]
|
784 |
+
if not os.path.exists('./audios'): os.mkdir("./audios")
|
785 |
+
for filename in os.listdir("./audios"):
|
786 |
+
if filename.endswith(('.wav','.mp3','.ogg')):
|
787 |
+
audio_files.append("./audios/"+filename)
|
788 |
+
if index:
|
789 |
+
if len(audio_files) > 0: return sorted(audio_files)[0]
|
790 |
+
else: return ""
|
791 |
+
elif len(audio_files) > 0: return sorted(audio_files)
|
792 |
+
else: return []
|
793 |
+
|
794 |
+
def get_index():
|
795 |
+
if find_model() != '':
|
796 |
+
chosen_model=sorted(names)[0].split(".")[0]
|
797 |
+
logs_path="./logs/"+chosen_model
|
798 |
+
if os.path.exists(logs_path):
|
799 |
+
for file in os.listdir(logs_path):
|
800 |
+
if file.endswith(".index"):
|
801 |
+
return os.path.join(logs_path, file)
|
802 |
+
return ''
|
803 |
+
else:
|
804 |
+
return ''
|
805 |
+
|
806 |
+
def get_indexes():
|
807 |
+
indexes_list=[]
|
808 |
+
for dirpath, dirnames, filenames in os.walk("./logs/"):
|
809 |
+
for filename in filenames:
|
810 |
+
if filename.endswith(".index"):
|
811 |
+
indexes_list.append(os.path.join(dirpath,filename))
|
812 |
+
if len(indexes_list) > 0:
|
813 |
+
return indexes_list
|
814 |
+
else:
|
815 |
+
return ''
|
816 |
+
|
817 |
+
def save_wav(file):
|
818 |
+
try:
|
819 |
+
file_path=file.name
|
820 |
+
shutil.move(file_path,'./audios')
|
821 |
+
return './audios/'+os.path.basename(file_path)
|
822 |
+
except AttributeError:
|
823 |
+
try:
|
824 |
+
new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav'
|
825 |
+
new_path='./audios/'+new_name
|
826 |
+
shutil.move(file,new_path)
|
827 |
+
return new_path
|
828 |
+
except TypeError:
|
829 |
+
return None
|
830 |
+
|
831 |
+
def download_from_url(url, model):
|
832 |
+
if url == '':
|
833 |
+
return "URL cannot be left empty."
|
834 |
+
if model =='':
|
835 |
+
return "You need to name your model. For example: My-Model"
|
836 |
+
url = url.strip()
|
837 |
+
zip_dirs = ["zips", "unzips"]
|
838 |
+
for directory in zip_dirs:
|
839 |
+
if os.path.exists(directory):
|
840 |
+
shutil.rmtree(directory)
|
841 |
+
os.makedirs("zips", exist_ok=True)
|
842 |
+
os.makedirs("unzips", exist_ok=True)
|
843 |
+
zipfile = model + '.zip'
|
844 |
+
zipfile_path = './zips/' + zipfile
|
845 |
+
try:
|
846 |
+
if "drive.google.com" in url:
|
847 |
+
subprocess.run(["gdown", url, "--fuzzy", "-O", zipfile_path])
|
848 |
+
elif "mega.nz" in url:
|
849 |
+
m = Mega()
|
850 |
+
m.download_url(url, './zips')
|
851 |
+
else:
|
852 |
+
subprocess.run(["wget", url, "-O", zipfile_path])
|
853 |
+
for filename in os.listdir("./zips"):
|
854 |
+
if filename.endswith(".zip"):
|
855 |
+
zipfile_path = os.path.join("./zips/",filename)
|
856 |
+
shutil.unpack_archive(zipfile_path, "./unzips", 'zip')
|
857 |
+
else:
|
858 |
+
return "No zipfile found."
|
859 |
+
for root, dirs, files in os.walk('./unzips'):
|
860 |
+
for file in files:
|
861 |
+
file_path = os.path.join(root, file)
|
862 |
+
if file.endswith(".index"):
|
863 |
+
os.mkdir(f'./logs/{model}')
|
864 |
+
shutil.copy2(file_path,f'./logs/{model}')
|
865 |
+
elif "G_" not in file and "D_" not in file and file.endswith(".pth"):
|
866 |
+
shutil.copy(file_path,f'./assets/weights/{model}.pth')
|
867 |
+
shutil.rmtree("zips")
|
868 |
+
shutil.rmtree("unzips")
|
869 |
+
return "Success."
|
870 |
+
except:
|
871 |
+
return "There's been an error."
|
872 |
+
|
873 |
+
def upload_to_dataset(files, dir):
|
874 |
+
if dir == '':
|
875 |
+
dir = './dataset/'+datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
876 |
+
if not os.path.exists(dir):
|
877 |
+
os.makedirs(dir)
|
878 |
+
for file in files:
|
879 |
+
path=file.name
|
880 |
+
shutil.copy2(path,dir)
|
881 |
+
try:
|
882 |
+
gr.Info(i18n("处理数据"))
|
883 |
+
except:
|
884 |
+
pass
|
885 |
+
return i18n("处理数据"), {"value":dir,"__type__":"update"}
|
886 |
+
|
887 |
+
with gr.Blocks(title="EasyGUI v2.9",theme=gr.themes.Base()) as app:
|
888 |
+
gr.HTML("<h1> EasyGUI v2.9 </h1>")
|
889 |
+
with gr.Tabs():
|
890 |
+
with gr.TabItem(i18n("模型推理")):
|
891 |
+
with gr.Row():
|
892 |
+
sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names), value=find_model())
|
893 |
+
refresh_button = gr.Button(i18n("刷新音色列表和索引路径"), variant="primary")
|
894 |
+
#clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
|
895 |
+
spk_item = gr.Slider(
|
896 |
+
minimum=0,
|
897 |
+
maximum=2333,
|
898 |
+
step=1,
|
899 |
+
label=i18n("请选择说话人id"),
|
900 |
+
value=0,
|
901 |
+
visible=False,
|
902 |
+
interactive=True,
|
903 |
+
)
|
904 |
+
#clean_button.click(
|
905 |
+
# fn=clean, inputs=[], outputs=[sid0], api_name="infer_clean"
|
906 |
+
#)
|
907 |
+
vc_transform0 = gr.Number(
|
908 |
+
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
|
909 |
+
)
|
910 |
+
but0 = gr.Button(i18n("转换"), variant="primary")
|
911 |
+
with gr.Row():
|
912 |
+
with gr.Column():
|
913 |
+
with gr.Row():
|
914 |
+
dropbox = gr.File(label="Drop your audio here & hit the Reload button.")
|
915 |
+
with gr.Row():
|
916 |
+
record_button=gr.Audio(source="microphone", label="OR Record audio.", type="filepath")
|
917 |
+
with gr.Row():
|
918 |
+
input_audio0 = gr.Dropdown(
|
919 |
+
label=i18n("输入待处理音频文件路径(默认是正确格式示例)"),
|
920 |
+
value=find_audios(True),
|
921 |
+
choices=find_audios()
|
922 |
+
)
|
923 |
+
record_button.change(fn=save_wav, inputs=[record_button], outputs=[input_audio0])
|
924 |
+
dropbox.upload(fn=save_wav, inputs=[dropbox], outputs=[input_audio0])
|
925 |
+
with gr.Column():
|
926 |
+
with gr.Accordion(label=i18n("自动检测index路径,下拉式选择(dropdown)"), open=False):
|
927 |
+
file_index2 = gr.Dropdown(
|
928 |
+
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
929 |
+
choices=get_indexes(),
|
930 |
+
interactive=True,
|
931 |
+
value=get_index()
|
932 |
+
)
|
933 |
+
index_rate1 = gr.Slider(
|
934 |
+
minimum=0,
|
935 |
+
maximum=1,
|
936 |
+
label=i18n("检索特征占比"),
|
937 |
+
value=0.66,
|
938 |
+
interactive=True,
|
939 |
+
)
|
940 |
+
vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
|
941 |
+
with gr.Accordion(label=i18n("常规设置"), open=False):
|
942 |
+
f0method0 = gr.Radio(
|
943 |
+
label=i18n(
|
944 |
+
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
|
945 |
+
),
|
946 |
+
choices=["pm", "harvest", "crepe", "rmvpe"]
|
947 |
+
if config.dml == False
|
948 |
+
else ["pm", "harvest", "rmvpe"],
|
949 |
+
value="rmvpe",
|
950 |
+
interactive=True,
|
951 |
+
)
|
952 |
+
filter_radius0 = gr.Slider(
|
953 |
+
minimum=0,
|
954 |
+
maximum=7,
|
955 |
+
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
956 |
+
value=3,
|
957 |
+
step=1,
|
958 |
+
interactive=True,
|
959 |
+
)
|
960 |
+
resample_sr0 = gr.Slider(
|
961 |
+
minimum=0,
|
962 |
+
maximum=48000,
|
963 |
+
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
964 |
+
value=0,
|
965 |
+
step=1,
|
966 |
+
interactive=True,
|
967 |
+
)
|
968 |
+
rms_mix_rate0 = gr.Slider(
|
969 |
+
minimum=0,
|
970 |
+
maximum=1,
|
971 |
+
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
972 |
+
value=0.21,
|
973 |
+
interactive=True,
|
974 |
+
)
|
975 |
+
protect0 = gr.Slider(
|
976 |
+
minimum=0,
|
977 |
+
maximum=0.5,
|
978 |
+
label=i18n(
|
979 |
+
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引��果"
|
980 |
+
),
|
981 |
+
value=0.33,
|
982 |
+
step=0.01,
|
983 |
+
interactive=True,
|
984 |
+
)
|
985 |
+
file_index1 = gr.Textbox(
|
986 |
+
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
987 |
+
value="",
|
988 |
+
interactive=True,
|
989 |
+
visible=False
|
990 |
+
)
|
991 |
+
refresh_button.click(
|
992 |
+
fn=change_choices,
|
993 |
+
inputs=[],
|
994 |
+
outputs=[sid0, file_index2, input_audio0],
|
995 |
+
api_name="infer_refresh",
|
996 |
+
)
|
997 |
+
# file_big_npy1 = gr.Textbox(
|
998 |
+
# label=i18n("特征文件路径"),
|
999 |
+
# value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
1000 |
+
# interactive=True,
|
1001 |
+
# )
|
1002 |
+
with gr.Row():
|
1003 |
+
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"), visible=False)
|
1004 |
+
with gr.Row():
|
1005 |
+
vc_output1 = gr.Textbox(label=i18n("输出信息"))
|
1006 |
+
but0.click(
|
1007 |
+
vc.vc_single,
|
1008 |
+
[
|
1009 |
+
spk_item,
|
1010 |
+
input_audio0,
|
1011 |
+
vc_transform0,
|
1012 |
+
f0_file,
|
1013 |
+
f0method0,
|
1014 |
+
file_index1,
|
1015 |
+
file_index2,
|
1016 |
+
# file_big_npy1,
|
1017 |
+
index_rate1,
|
1018 |
+
filter_radius0,
|
1019 |
+
resample_sr0,
|
1020 |
+
rms_mix_rate0,
|
1021 |
+
protect0,
|
1022 |
+
],
|
1023 |
+
[vc_output1, vc_output2],
|
1024 |
+
api_name="infer_convert",
|
1025 |
+
)
|
1026 |
+
with gr.Row():
|
1027 |
+
with gr.Accordion(open=False, label=i18n("批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ")):
|
1028 |
+
with gr.Column():
|
1029 |
+
vc_transform1 = gr.Number(
|
1030 |
+
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
|
1031 |
+
)
|
1032 |
+
opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
|
1033 |
+
f0method1 = gr.Radio(
|
1034 |
+
label=i18n(
|
1035 |
+
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
|
1036 |
+
),
|
1037 |
+
choices=["pm", "harvest", "crepe", "rmvpe"]
|
1038 |
+
if config.dml == False
|
1039 |
+
else ["pm", "harvest", "rmvpe"],
|
1040 |
+
value="pm",
|
1041 |
+
interactive=True,
|
1042 |
+
)
|
1043 |
+
filter_radius1 = gr.Slider(
|
1044 |
+
minimum=0,
|
1045 |
+
maximum=7,
|
1046 |
+
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
1047 |
+
value=3,
|
1048 |
+
step=1,
|
1049 |
+
interactive=True,
|
1050 |
+
)
|
1051 |
+
with gr.Column():
|
1052 |
+
file_index3 = gr.Textbox(
|
1053 |
+
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
1054 |
+
value="",
|
1055 |
+
interactive=True,
|
1056 |
+
visible=False
|
1057 |
+
)
|
1058 |
+
file_index4 = gr.Dropdown(
|
1059 |
+
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
1060 |
+
choices=sorted(index_paths),
|
1061 |
+
interactive=True,
|
1062 |
+
)
|
1063 |
+
refresh_button.click(
|
1064 |
+
fn=lambda: change_choices()[1],
|
1065 |
+
inputs=[],
|
1066 |
+
outputs=file_index4,
|
1067 |
+
api_name="infer_refresh_batch",
|
1068 |
+
)
|
1069 |
+
# file_big_npy2 = gr.Textbox(
|
1070 |
+
# label=i18n("特征文件路径"),
|
1071 |
+
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
1072 |
+
# interactive=True,
|
1073 |
+
# )
|
1074 |
+
index_rate2 = gr.Slider(
|
1075 |
+
minimum=0,
|
1076 |
+
maximum=1,
|
1077 |
+
label=i18n("检索特��占比"),
|
1078 |
+
value=1,
|
1079 |
+
interactive=True,
|
1080 |
+
)
|
1081 |
+
with gr.Column():
|
1082 |
+
resample_sr1 = gr.Slider(
|
1083 |
+
minimum=0,
|
1084 |
+
maximum=48000,
|
1085 |
+
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
1086 |
+
value=0,
|
1087 |
+
step=1,
|
1088 |
+
interactive=True,
|
1089 |
+
)
|
1090 |
+
rms_mix_rate1 = gr.Slider(
|
1091 |
+
minimum=0,
|
1092 |
+
maximum=1,
|
1093 |
+
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
1094 |
+
value=1,
|
1095 |
+
interactive=True,
|
1096 |
+
)
|
1097 |
+
protect1 = gr.Slider(
|
1098 |
+
minimum=0,
|
1099 |
+
maximum=0.5,
|
1100 |
+
label=i18n(
|
1101 |
+
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
1102 |
+
),
|
1103 |
+
value=0.33,
|
1104 |
+
step=0.01,
|
1105 |
+
interactive=True,
|
1106 |
+
)
|
1107 |
+
with gr.Column():
|
1108 |
+
dir_input = gr.Textbox(
|
1109 |
+
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
|
1110 |
+
value="E:\codes\py39\\test-20230416b\\todo-songs",
|
1111 |
+
)
|
1112 |
+
inputs = gr.File(
|
1113 |
+
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
|
1114 |
+
)
|
1115 |
+
with gr.Row():
|
1116 |
+
format1 = gr.Radio(
|
1117 |
+
label=i18n("导出文件格式"),
|
1118 |
+
choices=["wav", "flac", "mp3", "m4a"],
|
1119 |
+
value="flac",
|
1120 |
+
interactive=True,
|
1121 |
+
)
|
1122 |
+
but1 = gr.Button(i18n("转换"), variant="primary")
|
1123 |
+
vc_output3 = gr.Textbox(label=i18n("输出信息"))
|
1124 |
+
but1.click(
|
1125 |
+
vc.vc_multi,
|
1126 |
+
[
|
1127 |
+
spk_item,
|
1128 |
+
dir_input,
|
1129 |
+
opt_input,
|
1130 |
+
inputs,
|
1131 |
+
vc_transform1,
|
1132 |
+
f0method1,
|
1133 |
+
file_index3,
|
1134 |
+
file_index4,
|
1135 |
+
# file_big_npy2,
|
1136 |
+
index_rate2,
|
1137 |
+
filter_radius1,
|
1138 |
+
resample_sr1,
|
1139 |
+
rms_mix_rate1,
|
1140 |
+
protect1,
|
1141 |
+
format1,
|
1142 |
+
],
|
1143 |
+
[vc_output3],
|
1144 |
+
api_name="infer_convert_batch",
|
1145 |
+
)
|
1146 |
+
sid0.change(
|
1147 |
+
fn=vc.get_vc,
|
1148 |
+
inputs=[sid0, protect0, protect1],
|
1149 |
+
outputs=[spk_item, protect0, protect1, file_index2, file_index4],
|
1150 |
+
)
|
1151 |
+
with gr.TabItem("Download Model"):
|
1152 |
+
with gr.Row():
|
1153 |
+
url=gr.Textbox(label="Enter the URL to the Model:")
|
1154 |
+
with gr.Row():
|
1155 |
+
model = gr.Textbox(label="Name your model:")
|
1156 |
+
download_button=gr.Button("Download")
|
1157 |
+
with gr.Row():
|
1158 |
+
status_bar=gr.Textbox(label="")
|
1159 |
+
download_button.click(fn=download_from_url, inputs=[url, model], outputs=[status_bar])
|
1160 |
+
with gr.Row():
|
1161 |
+
gr.Markdown(
|
1162 |
+
"""
|
1163 |
+
❤️ If you like the EasyGUI, help me keep it.❤️
|
1164 |
+
https://paypal.me/lesantillan
|
1165 |
+
"""
|
1166 |
+
)
|
1167 |
+
with gr.TabItem(i18n("训练")):
|
1168 |
+
with gr.Row():
|
1169 |
+
with gr.Column():
|
1170 |
+
exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="My-Voice")
|
1171 |
+
np7 = gr.Slider(
|
1172 |
+
minimum=0,
|
1173 |
+
maximum=config.n_cpu,
|
1174 |
+
step=1,
|
1175 |
+
label=i18n("提取音高和处理数据使用的CPU进程数"),
|
1176 |
+
value=int(np.ceil(config.n_cpu / 1.5)),
|
1177 |
+
interactive=True,
|
1178 |
+
)
|
1179 |
+
sr2 = gr.Radio(
|
1180 |
+
label=i18n("目标采样率"),
|
1181 |
+
choices=["40k", "48k"],
|
1182 |
+
value="40k",
|
1183 |
+
interactive=True,
|
1184 |
+
visible=False
|
1185 |
+
)
|
1186 |
+
if_f0_3 = gr.Radio(
|
1187 |
+
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
|
1188 |
+
choices=[True, False],
|
1189 |
+
value=True,
|
1190 |
+
interactive=True,
|
1191 |
+
visible=False
|
1192 |
+
)
|
1193 |
+
version19 = gr.Radio(
|
1194 |
+
label=i18n("版本"),
|
1195 |
+
choices=["v1", "v2"],
|
1196 |
+
value="v2",
|
1197 |
+
interactive=True,
|
1198 |
+
visible=False,
|
1199 |
+
)
|
1200 |
+
trainset_dir4 = gr.Textbox(
|
1201 |
+
label=i18n("输入训练文件夹路径"), value='./dataset/'+datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
1202 |
+
)
|
1203 |
+
easy_uploader = gr.Files(label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹"),file_types=['audio'])
|
1204 |
+
but1 = gr.Button(label=i18n("处理数据"), variant="primary")
|
1205 |
+
info1 = gr.Textbox(label=i18n("输出信息"), value="")
|
1206 |
+
easy_uploader.upload(fn=upload_to_dataset, inputs=[easy_uploader, trainset_dir4], outputs=[info1, trainset_dir4])
|
1207 |
+
gpus6 = gr.Textbox(
|
1208 |
+
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
1209 |
+
value=gpus,
|
1210 |
+
interactive=True,
|
1211 |
+
visible=F0GPUVisible,
|
1212 |
+
)
|
1213 |
+
gpu_info9 = gr.Textbox(
|
1214 |
+
label=i18n("显卡信息"), value=gpu_info, visible=F0GPUVisible
|
1215 |
+
)
|
1216 |
+
spk_id5 = gr.Slider(
|
1217 |
+
minimum=0,
|
1218 |
+
maximum=4,
|
1219 |
+
step=1,
|
1220 |
+
label=i18n("请指定说话人id"),
|
1221 |
+
value=0,
|
1222 |
+
interactive=True,
|
1223 |
+
visible=False
|
1224 |
+
)
|
1225 |
+
but1.click(
|
1226 |
+
preprocess_dataset,
|
1227 |
+
[trainset_dir4, exp_dir1, sr2, np7],
|
1228 |
+
[info1],
|
1229 |
+
api_name="train_preprocess",
|
1230 |
+
)
|
1231 |
+
with gr.Column():
|
1232 |
+
f0method8 = gr.Radio(
|
1233 |
+
label=i18n(
|
1234 |
+
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU"
|
1235 |
+
),
|
1236 |
+
choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
|
1237 |
+
value="rmvpe_gpu",
|
1238 |
+
interactive=True,
|
1239 |
+
)
|
1240 |
+
gpus_rmvpe = gr.Textbox(
|
1241 |
+
label=i18n(
|
1242 |
+
"rmvpe卡号配置:以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程"
|
1243 |
+
),
|
1244 |
+
value="%s-%s" % (gpus, gpus),
|
1245 |
+
interactive=True,
|
1246 |
+
visible=F0GPUVisible,
|
1247 |
+
)
|
1248 |
+
but2 = gr.Button(i18n("特征提取"), variant="primary")
|
1249 |
+
info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
1250 |
+
f0method8.change(
|
1251 |
+
fn=change_f0_method,
|
1252 |
+
inputs=[f0method8],
|
1253 |
+
outputs=[gpus_rmvpe],
|
1254 |
+
)
|
1255 |
+
but2.click(
|
1256 |
+
extract_f0_feature,
|
1257 |
+
[
|
1258 |
+
gpus6,
|
1259 |
+
np7,
|
1260 |
+
f0method8,
|
1261 |
+
if_f0_3,
|
1262 |
+
exp_dir1,
|
1263 |
+
version19,
|
1264 |
+
gpus_rmvpe,
|
1265 |
+
],
|
1266 |
+
[info2],
|
1267 |
+
api_name="train_extract_f0_feature",
|
1268 |
+
)
|
1269 |
+
with gr.Column():
|
1270 |
+
total_epoch11 = gr.Slider(
|
1271 |
+
minimum=2,
|
1272 |
+
maximum=1000,
|
1273 |
+
step=1,
|
1274 |
+
label=i18n("总训练轮数total_epoch"),
|
1275 |
+
value=150,
|
1276 |
+
interactive=True,
|
1277 |
+
)
|
1278 |
+
gpus16 = gr.Textbox(
|
1279 |
+
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
1280 |
+
value="0",
|
1281 |
+
interactive=True,
|
1282 |
+
visible=True
|
1283 |
+
)
|
1284 |
+
but3 = gr.Button(i18n("训练模型"), variant="primary")
|
1285 |
+
but4 = gr.Button(i18n("训练特征索引"), variant="primary")
|
1286 |
+
info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10)
|
1287 |
+
with gr.Accordion(label=i18n("常规设置"), open=False):
|
1288 |
+
save_epoch10 = gr.Slider(
|
1289 |
+
minimum=1,
|
1290 |
+
maximum=50,
|
1291 |
+
step=1,
|
1292 |
+
label=i18n("保存频率save_every_epoch"),
|
1293 |
+
value=25,
|
1294 |
+
interactive=True,
|
1295 |
+
)
|
1296 |
+
batch_size12 = gr.Slider(
|
1297 |
+
minimum=1,
|
1298 |
+
maximum=40,
|
1299 |
+
step=1,
|
1300 |
+
label=i18n("每张显卡的batch_size"),
|
1301 |
+
value=default_batch_size,
|
1302 |
+
interactive=True,
|
1303 |
+
)
|
1304 |
+
if_save_latest13 = gr.Radio(
|
1305 |
+
label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"),
|
1306 |
+
choices=[i18n("是"), i18n("否")],
|
1307 |
+
value=i18n("是"),
|
1308 |
+
interactive=True,
|
1309 |
+
)
|
1310 |
+
if_cache_gpu17 = gr.Radio(
|
1311 |
+
label=i18n(
|
1312 |
+
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速"
|
1313 |
+
),
|
1314 |
+
choices=[i18n("是"), i18n("否")],
|
1315 |
+
value=i18n("否"),
|
1316 |
+
interactive=True,
|
1317 |
+
)
|
1318 |
+
if_save_every_weights18 = gr.Radio(
|
1319 |
+
label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"),
|
1320 |
+
choices=[i18n("是"), i18n("否")],
|
1321 |
+
value=i18n("是"),
|
1322 |
+
interactive=True,
|
1323 |
+
)
|
1324 |
+
with gr.Row():
|
1325 |
+
pretrained_G14 = gr.Textbox(
|
1326 |
+
label=i18n("加载预训练底模G路径"),
|
1327 |
+
value="assets/pretrained_v2/f0G40k.pth",
|
1328 |
+
interactive=True,
|
1329 |
+
visible=False
|
1330 |
+
)
|
1331 |
+
pretrained_D15 = gr.Textbox(
|
1332 |
+
label=i18n("加载预训练底模D路径"),
|
1333 |
+
value="assets/pretrained_v2/f0D40k.pth",
|
1334 |
+
interactive=True,
|
1335 |
+
visible=False
|
1336 |
+
)
|
1337 |
+
sr2.change(
|
1338 |
+
change_sr2,
|
1339 |
+
[sr2, if_f0_3, version19],
|
1340 |
+
[pretrained_G14, pretrained_D15],
|
1341 |
+
)
|
1342 |
+
version19.change(
|
1343 |
+
change_version19,
|
1344 |
+
[sr2, if_f0_3, version19],
|
1345 |
+
[pretrained_G14, pretrained_D15, sr2],
|
1346 |
+
)
|
1347 |
+
if_f0_3.change(
|
1348 |
+
change_f0,
|
1349 |
+
[if_f0_3, sr2, version19],
|
1350 |
+
[f0method8, pretrained_G14, pretrained_D15],
|
1351 |
+
)
|
1352 |
+
with gr.Row():
|
1353 |
+
but5 = gr.Button(i18n("一键训练"), variant="primary", visible=False)
|
1354 |
+
but3.click(
|
1355 |
+
click_train,
|
1356 |
+
[
|
1357 |
+
exp_dir1,
|
1358 |
+
sr2,
|
1359 |
+
if_f0_3,
|
1360 |
+
spk_id5,
|
1361 |
+
save_epoch10,
|
1362 |
+
total_epoch11,
|
1363 |
+
batch_size12,
|
1364 |
+
if_save_latest13,
|
1365 |
+
pretrained_G14,
|
1366 |
+
pretrained_D15,
|
1367 |
+
gpus16,
|
1368 |
+
if_cache_gpu17,
|
1369 |
+
if_save_every_weights18,
|
1370 |
+
version19,
|
1371 |
+
],
|
1372 |
+
info3,
|
1373 |
+
api_name="train_start",
|
1374 |
+
)
|
1375 |
+
but4.click(train_index, [exp_dir1, version19], info3)
|
1376 |
+
but5.click(
|
1377 |
+
train1key,
|
1378 |
+
[
|
1379 |
+
exp_dir1,
|
1380 |
+
sr2,
|
1381 |
+
if_f0_3,
|
1382 |
+
trainset_dir4,
|
1383 |
+
spk_id5,
|
1384 |
+
np7,
|
1385 |
+
f0method8,
|
1386 |
+
save_epoch10,
|
1387 |
+
total_epoch11,
|
1388 |
+
batch_size12,
|
1389 |
+
if_save_latest13,
|
1390 |
+
pretrained_G14,
|
1391 |
+
pretrained_D15,
|
1392 |
+
gpus16,
|
1393 |
+
if_cache_gpu17,
|
1394 |
+
if_save_every_weights18,
|
1395 |
+
version19,
|
1396 |
+
gpus_rmvpe,
|
1397 |
+
],
|
1398 |
+
info3,
|
1399 |
+
api_name="train_start_all",
|
1400 |
+
)
|
1401 |
+
|
1402 |
+
if config.iscolab:
|
1403 |
+
app.queue(concurrency_count=511, max_size=1022).launch(share=True)
|
1404 |
+
else:
|
1405 |
+
app.queue(concurrency_count=511, max_size=1022).launch(
|
1406 |
+
server_name="0.0.0.0",
|
1407 |
+
inbrowser=not config.noautoopen,
|
1408 |
+
server_port=config.listen_port,
|
1409 |
+
quiet=True,
|
1410 |
+
)
|
a.png
ADDED
app.py
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
audios/somegirl.mp3
ADDED
Binary file (32.2 kB). View file
|
|
audios/someguy.mp3
ADDED
Binary file (24.9 kB). View file
|
|
audios/unachica.mp3
ADDED
Binary file (36.4 kB). View file
|
|
audios/unchico.mp3
ADDED
Binary file (35.9 kB). View file
|
|
configs/config.py
CHANGED
@@ -5,13 +5,10 @@ import json
|
|
5 |
from multiprocessing import cpu_count
|
6 |
|
7 |
import torch
|
8 |
-
|
9 |
try:
|
10 |
-
import intel_extension_for_pytorch as ipex
|
11 |
-
|
12 |
if torch.xpu.is_available():
|
13 |
from infer.modules.ipex import ipex_init
|
14 |
-
|
15 |
ipex_init()
|
16 |
except Exception:
|
17 |
pass
|
|
|
5 |
from multiprocessing import cpu_count
|
6 |
|
7 |
import torch
|
|
|
8 |
try:
|
9 |
+
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
|
|
10 |
if torch.xpu.is_available():
|
11 |
from infer.modules.ipex import ipex_init
|
|
|
12 |
ipex_init()
|
13 |
except Exception:
|
14 |
pass
|
docker-compose.yml
CHANGED
@@ -10,11 +10,4 @@ services:
|
|
10 |
- ./opt:/app/opt
|
11 |
# - ./dataset:/app/dataset # you can use this folder in order to provide your dataset for model training
|
12 |
ports:
|
13 |
-
- 7865:7865
|
14 |
-
deploy:
|
15 |
-
resources:
|
16 |
-
reservations:
|
17 |
-
devices:
|
18 |
-
- driver: nvidia
|
19 |
-
count: 1
|
20 |
-
capabilities: [gpu]
|
|
|
10 |
- ./opt:/app/opt
|
11 |
# - ./dataset:/app/dataset # you can use this folder in order to provide your dataset for model training
|
12 |
ports:
|
13 |
+
- 7865:7865
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/en/README.en.md
CHANGED
@@ -57,9 +57,6 @@ pip install torch torchvision torchaudio
|
|
57 |
|
58 |
#For Windows + Nvidia Ampere Architecture(RTX30xx), you need to specify the cuda version corresponding to pytorch according to the experience of https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/issues/21
|
59 |
#pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
|
60 |
-
|
61 |
-
#For Linux + AMD Cards, you need to use the following pytorch versions:
|
62 |
-
#pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.4.2
|
63 |
```
|
64 |
|
65 |
Then can use poetry to install the other dependencies:
|
@@ -78,14 +75,12 @@ You can also use pip to install them:
|
|
78 |
for Nvidia graphics cards
|
79 |
pip install -r requirements.txt
|
80 |
|
81 |
-
for AMD/Intel graphics cards
|
82 |
pip install -r requirements-dml.txt
|
83 |
|
84 |
for Intel ARC graphics cards on Linux / WSL using Python 3.10:
|
85 |
pip install -r requirements-ipex.txt
|
86 |
|
87 |
-
for AMD graphics cards on Linux (ROCm):
|
88 |
-
pip install -r requirements-amd.txt
|
89 |
```
|
90 |
|
91 |
------
|
@@ -140,32 +135,8 @@ Then use this command to start Webui:
|
|
140 |
```bash
|
141 |
python infer-web.py
|
142 |
```
|
143 |
-
|
144 |
If you are using Windows or macOS, you can download and extract `RVC-beta.7z` to use RVC directly by using `go-web.bat` on windows or `sh ./run.sh` on macOS to start Webui.
|
145 |
|
146 |
-
## ROCm Support for AMD graphic cards (Linux only)
|
147 |
-
To use ROCm on Linux install all required drivers as described [here](https://rocm.docs.amd.com/en/latest/deploy/linux/os-native/install.html).
|
148 |
-
|
149 |
-
On Arch use pacman to install the driver:
|
150 |
-
````
|
151 |
-
pacman -S rocm-hip-sdk rocm-opencl-sdk
|
152 |
-
````
|
153 |
-
|
154 |
-
You might also need to set these environment variables (e.g. on a RX6700XT):
|
155 |
-
````
|
156 |
-
export ROCM_PATH=/opt/rocm
|
157 |
-
export HSA_OVERRIDE_GFX_VERSION=10.3.0
|
158 |
-
````
|
159 |
-
Also make sure your user is part of the `render` and `video` group:
|
160 |
-
````
|
161 |
-
sudo usermod -aG render $USERNAME
|
162 |
-
sudo usermod -aG video $USERNAME
|
163 |
-
````
|
164 |
-
After that you can run the WebUI:
|
165 |
-
```bash
|
166 |
-
python infer-web.py
|
167 |
-
```
|
168 |
-
|
169 |
## Credits
|
170 |
+ [ContentVec](https://github.com/auspicious3000/contentvec/)
|
171 |
+ [VITS](https://github.com/jaywalnut310/vits)
|
|
|
57 |
|
58 |
#For Windows + Nvidia Ampere Architecture(RTX30xx), you need to specify the cuda version corresponding to pytorch according to the experience of https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/issues/21
|
59 |
#pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
|
|
|
|
|
|
|
60 |
```
|
61 |
|
62 |
Then can use poetry to install the other dependencies:
|
|
|
75 |
for Nvidia graphics cards
|
76 |
pip install -r requirements.txt
|
77 |
|
78 |
+
for AMD/Intel graphics cards:
|
79 |
pip install -r requirements-dml.txt
|
80 |
|
81 |
for Intel ARC graphics cards on Linux / WSL using Python 3.10:
|
82 |
pip install -r requirements-ipex.txt
|
83 |
|
|
|
|
|
84 |
```
|
85 |
|
86 |
------
|
|
|
135 |
```bash
|
136 |
python infer-web.py
|
137 |
```
|
|
|
138 |
If you are using Windows or macOS, you can download and extract `RVC-beta.7z` to use RVC directly by using `go-web.bat` on windows or `sh ./run.sh` on macOS to start Webui.
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
## Credits
|
141 |
+ [ContentVec](https://github.com/auspicious3000/contentvec/)
|
142 |
+ [VITS](https://github.com/jaywalnut310/vits)
|
download_files.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess, os
|
2 |
+
assets_folder = "./assets/"
|
3 |
+
if not os.path.exists(assets_folder):
|
4 |
+
os.makedirs(assets_folder)
|
5 |
+
files = {
|
6 |
+
"rmvpe/rmvpe.pt":"https://huggingface.co/Rejekts/project/resolve/main/rmvpe.pt",
|
7 |
+
"hubert/hubert_base.pt":"https://huggingface.co/Rejekts/project/resolve/main/hubert_base.pt",
|
8 |
+
"pretrained_v2/D40k.pth":"https://huggingface.co/Rejekts/project/resolve/main/D40k.pth",
|
9 |
+
"pretrained_v2/G40k.pth":"https://huggingface.co/Rejekts/project/resolve/main/G40k.pth",
|
10 |
+
"pretrained_v2/f0D40k.pth":"https://huggingface.co/Rejekts/project/resolve/main/f0D40k.pth",
|
11 |
+
"pretrained_v2/f0G40k.pth":"https://huggingface.co/Rejekts/project/resolve/main/f0G40k.pth"
|
12 |
+
}
|
13 |
+
for file, link in files.items():
|
14 |
+
file_path = os.path.join(assets_folder, file)
|
15 |
+
if not os.path.exists(file_path):
|
16 |
+
try:
|
17 |
+
subprocess.run(['wget', link, '-O', file_path], check=True)
|
18 |
+
except subprocess.CalledProcessError as e:
|
19 |
+
print(f"Error downloading {file}: {e}")
|
gui_v1.py
CHANGED
@@ -377,7 +377,7 @@ if __name__ == "__main__":
|
|
377 |
)
|
378 |
if event == "start_vc" and self.flag_vc == False:
|
379 |
if self.set_values(values) == True:
|
380 |
-
logger.info("
|
381 |
self.start_vc()
|
382 |
settings = {
|
383 |
"pth_path": values["pth_path"],
|
@@ -478,28 +478,15 @@ if __name__ == "__main__":
|
|
478 |
inp_q,
|
479 |
opt_q,
|
480 |
device,
|
481 |
-
self.rvc if hasattr(self, "rvc") else None
|
482 |
)
|
483 |
self.config.samplerate = self.rvc.tgt_sr
|
484 |
self.zc = self.rvc.tgt_sr // 100
|
485 |
-
self.block_frame = (
|
486 |
-
int(np.round(self.config.block_time * self.config.samplerate / self.zc))
|
487 |
-
* self.zc
|
488 |
-
)
|
489 |
self.block_frame_16k = 160 * self.block_frame // self.zc
|
490 |
-
self.crossfade_frame = (
|
491 |
-
int(
|
492 |
-
np.round(
|
493 |
-
self.config.crossfade_time * self.config.samplerate / self.zc
|
494 |
-
)
|
495 |
-
)
|
496 |
-
* self.zc
|
497 |
-
)
|
498 |
self.sola_search_frame = self.zc
|
499 |
-
self.extra_frame = (
|
500 |
-
int(np.round(self.config.extra_time * self.config.samplerate / self.zc))
|
501 |
-
* self.zc
|
502 |
-
)
|
503 |
self.input_wav: torch.Tensor = torch.zeros(
|
504 |
self.extra_frame
|
505 |
+ self.crossfade_frame
|
@@ -508,11 +495,7 @@ if __name__ == "__main__":
|
|
508 |
device=device,
|
509 |
dtype=torch.float32,
|
510 |
)
|
511 |
-
self.input_wav_res: torch.Tensor
|
512 |
-
160 * self.input_wav.shape[0] // self.zc,
|
513 |
-
device=device,
|
514 |
-
dtype=torch.float32,
|
515 |
-
)
|
516 |
self.pitch: np.ndarray = np.zeros(
|
517 |
self.input_wav.shape[0] // self.zc,
|
518 |
dtype="int32",
|
@@ -526,9 +509,7 @@ if __name__ == "__main__":
|
|
526 |
)
|
527 |
self.nr_buffer: torch.Tensor = self.sola_buffer.clone()
|
528 |
self.output_buffer: torch.Tensor = self.input_wav.clone()
|
529 |
-
self.res_buffer: torch.Tensor = torch.zeros(
|
530 |
-
2 * self.zc, device=device, dtype=torch.float32
|
531 |
-
)
|
532 |
self.valid_rate = 1 - (self.extra_frame - 1) / self.input_wav.shape[0]
|
533 |
self.fade_in_window: torch.Tensor = (
|
534 |
torch.sin(
|
@@ -548,9 +529,7 @@ if __name__ == "__main__":
|
|
548 |
self.resampler = tat.Resample(
|
549 |
orig_freq=self.config.samplerate, new_freq=16000, dtype=torch.float32
|
550 |
).to(device)
|
551 |
-
self.tg = TorchGate(
|
552 |
-
sr=self.config.samplerate, n_fft=4 * self.zc, prop_decrease=0.9
|
553 |
-
).to(device)
|
554 |
thread_vc = threading.Thread(target=self.soundinput)
|
555 |
thread_vc.start()
|
556 |
|
@@ -581,7 +560,7 @@ if __name__ == "__main__":
|
|
581 |
indata = librosa.to_mono(indata.T)
|
582 |
if self.config.threhold > -60:
|
583 |
rms = librosa.feature.rms(
|
584 |
-
|
585 |
)
|
586 |
db_threhold = (
|
587 |
librosa.amplitude_to_db(rms, ref=1.0)[0] < self.config.threhold
|
@@ -589,44 +568,28 @@ if __name__ == "__main__":
|
|
589 |
for i in range(db_threhold.shape[0]):
|
590 |
if db_threhold[i]:
|
591 |
indata[i * self.zc : (i + 1) * self.zc] = 0
|
592 |
-
self.input_wav[: -self.block_frame] = self.input_wav[
|
593 |
-
|
594 |
-
].clone()
|
595 |
-
self.input_wav[-self.block_frame :] = torch.from_numpy(indata).to(device)
|
596 |
-
self.input_wav_res[: -self.block_frame_16k] = self.input_wav_res[
|
597 |
-
self.block_frame_16k :
|
598 |
-
].clone()
|
599 |
# input noise reduction and resampling
|
600 |
if self.config.I_noise_reduce:
|
601 |
-
input_wav = self.input_wav[
|
602 |
-
|
603 |
-
]
|
604 |
-
input_wav = self.tg(
|
605 |
-
input_wav.unsqueeze(0), self.input_wav.unsqueeze(0)
|
606 |
-
)[0, 2 * self.zc :]
|
607 |
input_wav[: self.crossfade_frame] *= self.fade_in_window
|
608 |
-
input_wav[: self.crossfade_frame] +=
|
609 |
-
|
610 |
-
)
|
611 |
-
self.
|
612 |
-
|
613 |
-
(self.res_buffer[:], input_wav[: self.block_frame])
|
614 |
-
)
|
615 |
-
self.res_buffer[:] = input_wav[-2 * self.zc :]
|
616 |
-
self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler(
|
617 |
-
input_wav
|
618 |
-
)[160:]
|
619 |
else:
|
620 |
-
self.input_wav_res[-self.block_frame_16k
|
621 |
-
self.input_wav[-self.block_frame - 2 * self.zc :]
|
622 |
-
)[160:]
|
623 |
# infer
|
624 |
f0_extractor_frame = self.block_frame_16k + 800
|
625 |
-
if self.config.f0method ==
|
626 |
f0_extractor_frame = 5120 * ((f0_extractor_frame - 1) // 5120 + 1)
|
627 |
infer_wav = self.rvc.infer(
|
628 |
self.input_wav_res,
|
629 |
-
self.input_wav_res[-f0_extractor_frame:].cpu().numpy(),
|
630 |
self.block_frame_16k,
|
631 |
self.valid_rate,
|
632 |
self.pitch,
|
@@ -638,77 +601,48 @@ if __name__ == "__main__":
|
|
638 |
]
|
639 |
# output noise reduction
|
640 |
if self.config.O_noise_reduce:
|
641 |
-
self.output_buffer[: -self.block_frame] = self.output_buffer[
|
642 |
-
|
643 |
-
|
644 |
-
self.output_buffer[-self.block_frame :] = infer_wav[-self.block_frame :]
|
645 |
-
infer_wav = self.tg(
|
646 |
-
infer_wav.unsqueeze(0), self.output_buffer.unsqueeze(0)
|
647 |
-
).squeeze(0)
|
648 |
# volume envelop mixing
|
649 |
if self.config.rms_mix_rate < 1:
|
650 |
rms1 = librosa.feature.rms(
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
frame_length=640,
|
655 |
-
hop_length=160,
|
656 |
)
|
657 |
rms1 = torch.from_numpy(rms1).to(device)
|
658 |
rms1 = F.interpolate(
|
659 |
-
rms1.unsqueeze(0),
|
660 |
-
|
661 |
-
mode="linear",
|
662 |
-
align_corners=True,
|
663 |
-
)[0, 0, :-1]
|
664 |
rms2 = librosa.feature.rms(
|
665 |
-
|
666 |
-
frame_length=4 * self.zc,
|
667 |
-
hop_length=self.zc,
|
668 |
)
|
669 |
rms2 = torch.from_numpy(rms2).to(device)
|
670 |
rms2 = F.interpolate(
|
671 |
-
rms2.unsqueeze(0),
|
672 |
-
|
673 |
-
mode="linear",
|
674 |
-
align_corners=True,
|
675 |
-
)[0, 0, :-1]
|
676 |
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-3)
|
677 |
-
infer_wav *= torch.pow(
|
678 |
-
rms1 / rms2, torch.tensor(1 - self.config.rms_mix_rate)
|
679 |
-
)
|
680 |
# SOLA algorithm from https://github.com/yxlllc/DDSP-SVC
|
681 |
-
conv_input = infer_wav[
|
682 |
-
None, None, : self.crossfade_frame + self.sola_search_frame
|
683 |
-
]
|
684 |
cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :])
|
685 |
cor_den = torch.sqrt(
|
686 |
-
F.conv1d(
|
687 |
-
conv_input**2,
|
688 |
-
torch.ones(1, 1, self.crossfade_frame, device=device),
|
689 |
-
)
|
690 |
-
+ 1e-8
|
691 |
-
)
|
692 |
if sys.platform == "darwin":
|
693 |
_, sola_offset = torch.max(cor_nom[0, 0] / cor_den[0, 0])
|
694 |
sola_offset = sola_offset.item()
|
695 |
else:
|
696 |
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
|
697 |
logger.debug("sola_offset = %d", int(sola_offset))
|
698 |
-
infer_wav = infer_wav[
|
699 |
-
sola_offset : sola_offset + self.block_frame + self.crossfade_frame
|
700 |
-
]
|
701 |
infer_wav[: self.crossfade_frame] *= self.fade_in_window
|
702 |
-
infer_wav[: self.crossfade_frame] += self.sola_buffer *
|
703 |
-
self.sola_buffer[:] = infer_wav[-self.crossfade_frame
|
704 |
if sys.platform == "darwin":
|
705 |
-
outdata[:] = (
|
706 |
-
infer_wav[: -self.crossfade_frame].cpu().numpy()[:, np.newaxis]
|
707 |
-
)
|
708 |
else:
|
709 |
-
outdata[:] = (
|
710 |
-
infer_wav[: -self.crossfade_frame].repeat(2, 1).t().cpu().numpy()
|
711 |
-
)
|
712 |
total_time = time.perf_counter() - start_time
|
713 |
self.window["infer_time"].update(int(total_time * 1000))
|
714 |
logger.info("Infer time: %.2f", total_time)
|
@@ -764,7 +698,9 @@ if __name__ == "__main__":
|
|
764 |
sd.default.device[1] = output_device_indices[
|
765 |
output_devices.index(output_device)
|
766 |
]
|
767 |
-
logger.info(
|
|
|
|
|
768 |
logger.info(
|
769 |
"Output device: %s:%s", str(sd.default.device[1]), output_device
|
770 |
)
|
|
|
377 |
)
|
378 |
if event == "start_vc" and self.flag_vc == False:
|
379 |
if self.set_values(values) == True:
|
380 |
+
logger.info("Use CUDA: %s", torch.cuda.is_available())
|
381 |
self.start_vc()
|
382 |
settings = {
|
383 |
"pth_path": values["pth_path"],
|
|
|
478 |
inp_q,
|
479 |
opt_q,
|
480 |
device,
|
481 |
+
self.rvc if hasattr(self, "rvc") else None
|
482 |
)
|
483 |
self.config.samplerate = self.rvc.tgt_sr
|
484 |
self.zc = self.rvc.tgt_sr // 100
|
485 |
+
self.block_frame = int(np.round(self.config.block_time * self.config.samplerate / self.zc)) * self.zc
|
|
|
|
|
|
|
486 |
self.block_frame_16k = 160 * self.block_frame // self.zc
|
487 |
+
self.crossfade_frame = int(np.round(self.config.crossfade_time * self.config.samplerate / self.zc)) * self.zc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
self.sola_search_frame = self.zc
|
489 |
+
self.extra_frame = int(np.round(self.config.extra_time * self.config.samplerate / self.zc)) * self.zc
|
|
|
|
|
|
|
490 |
self.input_wav: torch.Tensor = torch.zeros(
|
491 |
self.extra_frame
|
492 |
+ self.crossfade_frame
|
|
|
495 |
device=device,
|
496 |
dtype=torch.float32,
|
497 |
)
|
498 |
+
self.input_wav_res: torch.Tensor= torch.zeros(160 * self.input_wav.shape[0] // self.zc, device=device,dtype=torch.float32)
|
|
|
|
|
|
|
|
|
499 |
self.pitch: np.ndarray = np.zeros(
|
500 |
self.input_wav.shape[0] // self.zc,
|
501 |
dtype="int32",
|
|
|
509 |
)
|
510 |
self.nr_buffer: torch.Tensor = self.sola_buffer.clone()
|
511 |
self.output_buffer: torch.Tensor = self.input_wav.clone()
|
512 |
+
self.res_buffer: torch.Tensor = torch.zeros(2 * self.zc, device=device,dtype=torch.float32)
|
|
|
|
|
513 |
self.valid_rate = 1 - (self.extra_frame - 1) / self.input_wav.shape[0]
|
514 |
self.fade_in_window: torch.Tensor = (
|
515 |
torch.sin(
|
|
|
529 |
self.resampler = tat.Resample(
|
530 |
orig_freq=self.config.samplerate, new_freq=16000, dtype=torch.float32
|
531 |
).to(device)
|
532 |
+
self.tg = TorchGate(sr=self.config.samplerate, n_fft=4*self.zc, prop_decrease=0.9).to(device)
|
|
|
|
|
533 |
thread_vc = threading.Thread(target=self.soundinput)
|
534 |
thread_vc.start()
|
535 |
|
|
|
560 |
indata = librosa.to_mono(indata.T)
|
561 |
if self.config.threhold > -60:
|
562 |
rms = librosa.feature.rms(
|
563 |
+
y=indata, frame_length=4*self.zc, hop_length=self.zc
|
564 |
)
|
565 |
db_threhold = (
|
566 |
librosa.amplitude_to_db(rms, ref=1.0)[0] < self.config.threhold
|
|
|
568 |
for i in range(db_threhold.shape[0]):
|
569 |
if db_threhold[i]:
|
570 |
indata[i * self.zc : (i + 1) * self.zc] = 0
|
571 |
+
self.input_wav[: -self.block_frame] = self.input_wav[self.block_frame :].clone()
|
572 |
+
self.input_wav[-self.block_frame: ] = torch.from_numpy(indata).to(device)
|
573 |
+
self.input_wav_res[ : -self.block_frame_16k] = self.input_wav_res[self.block_frame_16k :].clone()
|
|
|
|
|
|
|
|
|
574 |
# input noise reduction and resampling
|
575 |
if self.config.I_noise_reduce:
|
576 |
+
input_wav = self.input_wav[-self.crossfade_frame -self.block_frame-2*self.zc: ]
|
577 |
+
input_wav = self.tg(input_wav.unsqueeze(0), self.input_wav.unsqueeze(0))[0, 2*self.zc:]
|
|
|
|
|
|
|
|
|
578 |
input_wav[: self.crossfade_frame] *= self.fade_in_window
|
579 |
+
input_wav[: self.crossfade_frame] += self.nr_buffer * self.fade_out_window
|
580 |
+
self.nr_buffer[:] = input_wav[-self.crossfade_frame: ]
|
581 |
+
input_wav = torch.cat((self.res_buffer[:], input_wav[: self.block_frame]))
|
582 |
+
self.res_buffer[:] = input_wav[-2*self.zc: ]
|
583 |
+
self.input_wav_res[-self.block_frame_16k-160: ] = self.resampler(input_wav)[160: ]
|
|
|
|
|
|
|
|
|
|
|
|
|
584 |
else:
|
585 |
+
self.input_wav_res[-self.block_frame_16k-160: ] = self.resampler(self.input_wav[-self.block_frame-2*self.zc: ])[160: ]
|
|
|
|
|
586 |
# infer
|
587 |
f0_extractor_frame = self.block_frame_16k + 800
|
588 |
+
if self.config.f0method == 'rmvpe':
|
589 |
f0_extractor_frame = 5120 * ((f0_extractor_frame - 1) // 5120 + 1)
|
590 |
infer_wav = self.rvc.infer(
|
591 |
self.input_wav_res,
|
592 |
+
self.input_wav_res[-f0_extractor_frame :].cpu().numpy(),
|
593 |
self.block_frame_16k,
|
594 |
self.valid_rate,
|
595 |
self.pitch,
|
|
|
601 |
]
|
602 |
# output noise reduction
|
603 |
if self.config.O_noise_reduce:
|
604 |
+
self.output_buffer[: -self.block_frame] = self.output_buffer[self.block_frame :].clone()
|
605 |
+
self.output_buffer[-self.block_frame: ] = infer_wav[-self.block_frame:]
|
606 |
+
infer_wav = self.tg(infer_wav.unsqueeze(0), self.output_buffer.unsqueeze(0)).squeeze(0)
|
|
|
|
|
|
|
|
|
607 |
# volume envelop mixing
|
608 |
if self.config.rms_mix_rate < 1:
|
609 |
rms1 = librosa.feature.rms(
|
610 |
+
y=self.input_wav_res[-160*infer_wav.shape[0]//self.zc :].cpu().numpy(),
|
611 |
+
frame_length=640,
|
612 |
+
hop_length=160,
|
|
|
|
|
613 |
)
|
614 |
rms1 = torch.from_numpy(rms1).to(device)
|
615 |
rms1 = F.interpolate(
|
616 |
+
rms1.unsqueeze(0), size=infer_wav.shape[0] + 1, mode="linear",align_corners=True,
|
617 |
+
)[0,0,:-1]
|
|
|
|
|
|
|
618 |
rms2 = librosa.feature.rms(
|
619 |
+
y=infer_wav[:].cpu().numpy(), frame_length=4*self.zc, hop_length=self.zc
|
|
|
|
|
620 |
)
|
621 |
rms2 = torch.from_numpy(rms2).to(device)
|
622 |
rms2 = F.interpolate(
|
623 |
+
rms2.unsqueeze(0), size=infer_wav.shape[0] + 1, mode="linear",align_corners=True,
|
624 |
+
)[0,0,:-1]
|
|
|
|
|
|
|
625 |
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-3)
|
626 |
+
infer_wav *= torch.pow(rms1 / rms2, torch.tensor(1 - self.config.rms_mix_rate))
|
|
|
|
|
627 |
# SOLA algorithm from https://github.com/yxlllc/DDSP-SVC
|
628 |
+
conv_input = infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame]
|
|
|
|
|
629 |
cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :])
|
630 |
cor_den = torch.sqrt(
|
631 |
+
F.conv1d(conv_input ** 2, torch.ones(1, 1, self.crossfade_frame, device=device)) + 1e-8)
|
|
|
|
|
|
|
|
|
|
|
632 |
if sys.platform == "darwin":
|
633 |
_, sola_offset = torch.max(cor_nom[0, 0] / cor_den[0, 0])
|
634 |
sola_offset = sola_offset.item()
|
635 |
else:
|
636 |
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
|
637 |
logger.debug("sola_offset = %d", int(sola_offset))
|
638 |
+
infer_wav = infer_wav[sola_offset: sola_offset + self.block_frame + self.crossfade_frame]
|
|
|
|
|
639 |
infer_wav[: self.crossfade_frame] *= self.fade_in_window
|
640 |
+
infer_wav[: self.crossfade_frame] += self.sola_buffer *self.fade_out_window
|
641 |
+
self.sola_buffer[:] = infer_wav[-self.crossfade_frame:]
|
642 |
if sys.platform == "darwin":
|
643 |
+
outdata[:] = infer_wav[:-self.crossfade_frame].cpu().numpy()[:, np.newaxis]
|
|
|
|
|
644 |
else:
|
645 |
+
outdata[:] = infer_wav[:-self.crossfade_frame].repeat(2, 1).t().cpu().numpy()
|
|
|
|
|
646 |
total_time = time.perf_counter() - start_time
|
647 |
self.window["infer_time"].update(int(total_time * 1000))
|
648 |
logger.info("Infer time: %.2f", total_time)
|
|
|
698 |
sd.default.device[1] = output_device_indices[
|
699 |
output_devices.index(output_device)
|
700 |
]
|
701 |
+
logger.info(
|
702 |
+
"Input device: %s:%s", str(sd.default.device[0]), input_device
|
703 |
+
)
|
704 |
logger.info(
|
705 |
"Output device: %s:%s", str(sd.default.device[1]), output_device
|
706 |
)
|
infer-web.py
CHANGED
@@ -1028,7 +1028,6 @@ with gr.Blocks(title="RVC WebUI") as app:
|
|
1028 |
fn=vc.get_vc,
|
1029 |
inputs=[sid0, protect0, protect1],
|
1030 |
outputs=[spk_item, protect0, protect1, file_index2, file_index4],
|
1031 |
-
api_name="infer_change_voice",
|
1032 |
)
|
1033 |
with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
|
1034 |
with gr.Group():
|
|
|
1028 |
fn=vc.get_vc,
|
1029 |
inputs=[sid0, protect0, protect1],
|
1030 |
outputs=[spk_item, protect0, protect1, file_index2, file_index4],
|
|
|
1031 |
)
|
1032 |
with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
|
1033 |
with gr.Group():
|
infer/lib/audio.py
CHANGED
@@ -3,49 +3,38 @@ import numpy as np
|
|
3 |
import av
|
4 |
from io import BytesIO
|
5 |
|
6 |
-
|
7 |
def wav2(i, o, format):
|
8 |
-
inp = av.open(i,
|
9 |
-
if format == "m4a":
|
10 |
-
|
11 |
-
|
12 |
-
if format == "
|
13 |
-
format = "libvorbis"
|
14 |
-
if format == "mp4":
|
15 |
-
format = "aac"
|
16 |
|
17 |
ostream = out.add_stream(format)
|
18 |
|
19 |
for frame in inp.decode(audio=0):
|
20 |
-
for p in ostream.encode(frame):
|
21 |
-
out.mux(p)
|
22 |
|
23 |
-
for p in ostream.encode(None):
|
24 |
-
out.mux(p)
|
25 |
|
26 |
out.close()
|
27 |
inp.close()
|
28 |
|
29 |
-
|
30 |
def audio2(i, o, format, sr):
|
31 |
-
inp = av.open(i,
|
32 |
-
out = av.open(o,
|
33 |
-
if format == "ogg":
|
34 |
-
|
35 |
-
if format == "f32le":
|
36 |
-
format = "pcm_f32le"
|
37 |
|
38 |
ostream = out.add_stream(format, channels=1)
|
39 |
ostream.sample_rate = sr
|
40 |
|
41 |
for frame in inp.decode(audio=0):
|
42 |
-
for p in ostream.encode(frame):
|
43 |
-
out.mux(p)
|
44 |
|
45 |
out.close()
|
46 |
inp.close()
|
47 |
|
48 |
-
|
49 |
def load_audio(file, sr):
|
50 |
try:
|
51 |
file = (
|
|
|
3 |
import av
|
4 |
from io import BytesIO
|
5 |
|
|
|
6 |
def wav2(i, o, format):
|
7 |
+
inp = av.open(i, 'rb')
|
8 |
+
if format == "m4a": format = "mp4"
|
9 |
+
out = av.open(o, 'wb', format=format)
|
10 |
+
if format == "ogg": format = "libvorbis"
|
11 |
+
if format == "mp4": format = "aac"
|
|
|
|
|
|
|
12 |
|
13 |
ostream = out.add_stream(format)
|
14 |
|
15 |
for frame in inp.decode(audio=0):
|
16 |
+
for p in ostream.encode(frame): out.mux(p)
|
|
|
17 |
|
18 |
+
for p in ostream.encode(None): out.mux(p)
|
|
|
19 |
|
20 |
out.close()
|
21 |
inp.close()
|
22 |
|
|
|
23 |
def audio2(i, o, format, sr):
|
24 |
+
inp = av.open(i, 'rb')
|
25 |
+
out = av.open(o, 'wb', format=format)
|
26 |
+
if format == "ogg": format = "libvorbis"
|
27 |
+
if format == "f32le": format = "pcm_f32le"
|
|
|
|
|
28 |
|
29 |
ostream = out.add_stream(format, channels=1)
|
30 |
ostream.sample_rate = sr
|
31 |
|
32 |
for frame in inp.decode(audio=0):
|
33 |
+
for p in ostream.encode(frame): out.mux(p)
|
|
|
34 |
|
35 |
out.close()
|
36 |
inp.close()
|
37 |
|
|
|
38 |
def load_audio(file, sr):
|
39 |
try:
|
40 |
file = (
|
infer/lib/infer_pack/models.py
CHANGED
@@ -15,7 +15,6 @@ from infer.lib.infer_pack.commons import get_padding, init_weights
|
|
15 |
|
16 |
has_xpu = bool(hasattr(torch, "xpu") and torch.xpu.is_available())
|
17 |
|
18 |
-
|
19 |
class TextEncoder256(nn.Module):
|
20 |
def __init__(
|
21 |
self,
|
@@ -1159,9 +1158,7 @@ class DiscriminatorP(torch.nn.Module):
|
|
1159 |
if t % self.period != 0: # pad first
|
1160 |
n_pad = self.period - (t % self.period)
|
1161 |
if has_xpu and x.dtype == torch.bfloat16:
|
1162 |
-
x = F.pad(x.to(dtype=torch.float16), (0, n_pad), "reflect").to(
|
1163 |
-
dtype=torch.bfloat16
|
1164 |
-
)
|
1165 |
else:
|
1166 |
x = F.pad(x, (0, n_pad), "reflect")
|
1167 |
t = t + n_pad
|
|
|
15 |
|
16 |
has_xpu = bool(hasattr(torch, "xpu") and torch.xpu.is_available())
|
17 |
|
|
|
18 |
class TextEncoder256(nn.Module):
|
19 |
def __init__(
|
20 |
self,
|
|
|
1158 |
if t % self.period != 0: # pad first
|
1159 |
n_pad = self.period - (t % self.period)
|
1160 |
if has_xpu and x.dtype == torch.bfloat16:
|
1161 |
+
x = F.pad(x.to(dtype=torch.float16), (0, n_pad), "reflect").to(dtype=torch.bfloat16)
|
|
|
|
|
1162 |
else:
|
1163 |
x = F.pad(x, (0, n_pad), "reflect")
|
1164 |
t = t + n_pad
|
infer/lib/rmvpe.py
CHANGED
@@ -2,14 +2,11 @@ import pdb, os
|
|
2 |
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
-
|
6 |
try:
|
7 |
-
#
|
8 |
-
import intel_extension_for_pytorch as ipex
|
9 |
-
|
10 |
if torch.xpu.is_available():
|
11 |
from infer.modules.ipex import ipex_init
|
12 |
-
|
13 |
ipex_init()
|
14 |
except Exception:
|
15 |
pass
|
|
|
2 |
|
3 |
import numpy as np
|
4 |
import torch
|
|
|
5 |
try:
|
6 |
+
#Fix "Torch not compiled with CUDA enabled"
|
7 |
+
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
|
|
8 |
if torch.xpu.is_available():
|
9 |
from infer.modules.ipex import ipex_init
|
|
|
10 |
ipex_init()
|
11 |
except Exception:
|
12 |
pass
|
infer/modules/ipex/__init__.py
CHANGED
@@ -2,16 +2,15 @@ import os
|
|
2 |
import sys
|
3 |
import contextlib
|
4 |
import torch
|
5 |
-
import intel_extension_for_pytorch as ipex
|
6 |
from .hijacks import ipex_hijacks
|
7 |
from .attention import attention_init
|
8 |
|
9 |
# pylint: disable=protected-access, missing-function-docstring, line-too-long
|
10 |
|
11 |
-
|
12 |
-
def ipex_init(): # pylint: disable=too-many-statements
|
13 |
try:
|
14 |
-
#
|
15 |
torch.cuda.current_device = torch.xpu.current_device
|
16 |
torch.cuda.current_stream = torch.xpu.current_stream
|
17 |
torch.cuda.device = torch.xpu.device
|
@@ -92,11 +91,11 @@ def ipex_init(): # pylint: disable=too-many-statements
|
|
92 |
torch.cuda.CharStorage = torch.xpu.CharStorage
|
93 |
torch.cuda.__file__ = torch.xpu.__file__
|
94 |
torch.cuda._is_in_bad_fork = torch.xpu.lazy_init._is_in_bad_fork
|
95 |
-
#
|
96 |
|
97 |
-
#
|
98 |
torch.cuda.memory = torch.xpu.memory
|
99 |
-
if
|
100 |
torch.xpu.empty_cache = lambda: None
|
101 |
torch.cuda.empty_cache = torch.xpu.empty_cache
|
102 |
torch.cuda.memory_stats = torch.xpu.memory_stats
|
@@ -112,11 +111,9 @@ def ipex_init(): # pylint: disable=too-many-statements
|
|
112 |
torch.cuda.reset_max_memory_cached = torch.xpu.reset_peak_memory_stats
|
113 |
torch.cuda.reset_max_memory_allocated = torch.xpu.reset_peak_memory_stats
|
114 |
torch.cuda.memory_stats_as_nested_dict = torch.xpu.memory_stats_as_nested_dict
|
115 |
-
torch.cuda.reset_accumulated_memory_stats =
|
116 |
-
torch.xpu.reset_accumulated_memory_stats
|
117 |
-
)
|
118 |
|
119 |
-
#
|
120 |
torch.cuda.get_rng_state = torch.xpu.get_rng_state
|
121 |
torch.cuda.get_rng_state_all = torch.xpu.get_rng_state_all
|
122 |
torch.cuda.set_rng_state = torch.xpu.set_rng_state
|
@@ -127,44 +124,35 @@ def ipex_init(): # pylint: disable=too-many-statements
|
|
127 |
torch.cuda.seed_all = torch.xpu.seed_all
|
128 |
torch.cuda.initial_seed = torch.xpu.initial_seed
|
129 |
|
130 |
-
#
|
131 |
torch.cuda.amp = torch.xpu.amp
|
132 |
if not hasattr(torch.cuda.amp, "common"):
|
133 |
torch.cuda.amp.common = contextlib.nullcontext()
|
134 |
torch.cuda.amp.common.amp_definitely_not_available = lambda: False
|
135 |
try:
|
136 |
torch.cuda.amp.GradScaler = torch.xpu.amp.GradScaler
|
137 |
-
except Exception:
|
138 |
try:
|
139 |
-
from .gradscaler import
|
140 |
-
gradscaler_init,
|
141 |
-
) # pylint: disable=import-outside-toplevel, import-error
|
142 |
-
|
143 |
gradscaler_init()
|
144 |
torch.cuda.amp.GradScaler = torch.xpu.amp.GradScaler
|
145 |
-
except Exception:
|
146 |
torch.cuda.amp.GradScaler = ipex.cpu.autocast._grad_scaler.GradScaler
|
147 |
|
148 |
-
#
|
149 |
torch._C._cuda_getCurrentRawStream = ipex._C._getCurrentStream
|
150 |
ipex._C._DeviceProperties.major = 2023
|
151 |
ipex._C._DeviceProperties.minor = 2
|
152 |
|
153 |
-
#
|
154 |
-
torch.cuda.mem_get_info = lambda device=None: [
|
155 |
-
(
|
156 |
-
torch.xpu.get_device_properties(device).total_memory
|
157 |
-
- torch.xpu.memory_allocated(device)
|
158 |
-
),
|
159 |
-
torch.xpu.get_device_properties(device).total_memory,
|
160 |
-
]
|
161 |
torch._utils._get_available_device_type = lambda: "xpu"
|
162 |
torch.has_cuda = True
|
163 |
torch.cuda.has_half = True
|
164 |
torch.cuda.is_bf16_supported = lambda *args, **kwargs: True
|
165 |
torch.cuda.is_fp16_supported = lambda *args, **kwargs: True
|
166 |
torch.version.cuda = "11.7"
|
167 |
-
torch.cuda.get_device_capability = lambda *args, **kwargs: [11,
|
168 |
torch.cuda.get_device_properties.major = 11
|
169 |
torch.cuda.get_device_properties.minor = 7
|
170 |
torch.cuda.ipc_collect = lambda *args, **kwargs: None
|
|
|
2 |
import sys
|
3 |
import contextlib
|
4 |
import torch
|
5 |
+
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
6 |
from .hijacks import ipex_hijacks
|
7 |
from .attention import attention_init
|
8 |
|
9 |
# pylint: disable=protected-access, missing-function-docstring, line-too-long
|
10 |
|
11 |
+
def ipex_init(): # pylint: disable=too-many-statements
|
|
|
12 |
try:
|
13 |
+
#Replace cuda with xpu:
|
14 |
torch.cuda.current_device = torch.xpu.current_device
|
15 |
torch.cuda.current_stream = torch.xpu.current_stream
|
16 |
torch.cuda.device = torch.xpu.device
|
|
|
91 |
torch.cuda.CharStorage = torch.xpu.CharStorage
|
92 |
torch.cuda.__file__ = torch.xpu.__file__
|
93 |
torch.cuda._is_in_bad_fork = torch.xpu.lazy_init._is_in_bad_fork
|
94 |
+
#torch.cuda.is_current_stream_capturing = torch.xpu.is_current_stream_capturing
|
95 |
|
96 |
+
#Memory:
|
97 |
torch.cuda.memory = torch.xpu.memory
|
98 |
+
if 'linux' in sys.platform and "WSL2" in os.popen("uname -a").read():
|
99 |
torch.xpu.empty_cache = lambda: None
|
100 |
torch.cuda.empty_cache = torch.xpu.empty_cache
|
101 |
torch.cuda.memory_stats = torch.xpu.memory_stats
|
|
|
111 |
torch.cuda.reset_max_memory_cached = torch.xpu.reset_peak_memory_stats
|
112 |
torch.cuda.reset_max_memory_allocated = torch.xpu.reset_peak_memory_stats
|
113 |
torch.cuda.memory_stats_as_nested_dict = torch.xpu.memory_stats_as_nested_dict
|
114 |
+
torch.cuda.reset_accumulated_memory_stats = torch.xpu.reset_accumulated_memory_stats
|
|
|
|
|
115 |
|
116 |
+
#RNG:
|
117 |
torch.cuda.get_rng_state = torch.xpu.get_rng_state
|
118 |
torch.cuda.get_rng_state_all = torch.xpu.get_rng_state_all
|
119 |
torch.cuda.set_rng_state = torch.xpu.set_rng_state
|
|
|
124 |
torch.cuda.seed_all = torch.xpu.seed_all
|
125 |
torch.cuda.initial_seed = torch.xpu.initial_seed
|
126 |
|
127 |
+
#AMP:
|
128 |
torch.cuda.amp = torch.xpu.amp
|
129 |
if not hasattr(torch.cuda.amp, "common"):
|
130 |
torch.cuda.amp.common = contextlib.nullcontext()
|
131 |
torch.cuda.amp.common.amp_definitely_not_available = lambda: False
|
132 |
try:
|
133 |
torch.cuda.amp.GradScaler = torch.xpu.amp.GradScaler
|
134 |
+
except Exception: # pylint: disable=broad-exception-caught
|
135 |
try:
|
136 |
+
from .gradscaler import gradscaler_init # pylint: disable=import-outside-toplevel, import-error
|
|
|
|
|
|
|
137 |
gradscaler_init()
|
138 |
torch.cuda.amp.GradScaler = torch.xpu.amp.GradScaler
|
139 |
+
except Exception: # pylint: disable=broad-exception-caught
|
140 |
torch.cuda.amp.GradScaler = ipex.cpu.autocast._grad_scaler.GradScaler
|
141 |
|
142 |
+
#C
|
143 |
torch._C._cuda_getCurrentRawStream = ipex._C._getCurrentStream
|
144 |
ipex._C._DeviceProperties.major = 2023
|
145 |
ipex._C._DeviceProperties.minor = 2
|
146 |
|
147 |
+
#Fix functions with ipex:
|
148 |
+
torch.cuda.mem_get_info = lambda device=None: [(torch.xpu.get_device_properties(device).total_memory - torch.xpu.memory_allocated(device)), torch.xpu.get_device_properties(device).total_memory]
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
torch._utils._get_available_device_type = lambda: "xpu"
|
150 |
torch.has_cuda = True
|
151 |
torch.cuda.has_half = True
|
152 |
torch.cuda.is_bf16_supported = lambda *args, **kwargs: True
|
153 |
torch.cuda.is_fp16_supported = lambda *args, **kwargs: True
|
154 |
torch.version.cuda = "11.7"
|
155 |
+
torch.cuda.get_device_capability = lambda *args, **kwargs: [11,7]
|
156 |
torch.cuda.get_device_properties.major = 11
|
157 |
torch.cuda.get_device_properties.minor = 7
|
158 |
torch.cuda.ipc_collect = lambda *args, **kwargs: None
|
infer/modules/ipex/attention.py
CHANGED
@@ -1,32 +1,22 @@
|
|
1 |
import torch
|
2 |
-
import intel_extension_for_pytorch as ipex
|
3 |
|
4 |
# pylint: disable=protected-access, missing-function-docstring, line-too-long
|
5 |
|
6 |
original_torch_bmm = torch.bmm
|
7 |
-
|
8 |
-
|
9 |
def torch_bmm(input, mat2, *, out=None):
|
10 |
if input.dtype != mat2.dtype:
|
11 |
mat2 = mat2.to(input.dtype)
|
12 |
|
13 |
-
#
|
14 |
-
batch_size_attention, input_tokens, mat2_shape =
|
15 |
-
input.shape[0],
|
16 |
-
input.shape[1],
|
17 |
-
mat2.shape[2],
|
18 |
-
)
|
19 |
block_multiply = 2.4 if input.dtype == torch.float32 else 1.2
|
20 |
-
block_size = (
|
21 |
-
(batch_size_attention * input_tokens * mat2_shape) / 1024 * block_multiply
|
22 |
-
) # MB
|
23 |
split_slice_size = batch_size_attention
|
24 |
if block_size >= 4000:
|
25 |
do_split = True
|
26 |
-
#
|
27 |
-
while (
|
28 |
-
(split_slice_size * input_tokens * mat2_shape) / 1024 * block_multiply
|
29 |
-
) > 4000:
|
30 |
split_slice_size = split_slice_size // 2
|
31 |
if split_slice_size <= 1:
|
32 |
split_slice_size = 1
|
@@ -34,16 +24,12 @@ def torch_bmm(input, mat2, *, out=None):
|
|
34 |
else:
|
35 |
do_split = False
|
36 |
|
37 |
-
split_block_size = (
|
38 |
-
(split_slice_size * input_tokens * mat2_shape) / 1024 * block_multiply
|
39 |
-
) # MB
|
40 |
split_2_slice_size = input_tokens
|
41 |
if split_block_size >= 4000:
|
42 |
do_split_2 = True
|
43 |
-
#
|
44 |
-
while (
|
45 |
-
(split_slice_size * split_2_slice_size * mat2_shape) / 1024 * block_multiply
|
46 |
-
) > 4000:
|
47 |
split_2_slice_size = split_2_slice_size // 2
|
48 |
if split_2_slice_size <= 1:
|
49 |
split_2_slice_size = 1
|
@@ -52,61 +38,40 @@ def torch_bmm(input, mat2, *, out=None):
|
|
52 |
do_split_2 = False
|
53 |
|
54 |
if do_split:
|
55 |
-
hidden_states = torch.zeros(
|
56 |
-
input.shape[0],
|
57 |
-
input.shape[1],
|
58 |
-
mat2.shape[2],
|
59 |
-
device=input.device,
|
60 |
-
dtype=input.dtype,
|
61 |
-
)
|
62 |
for i in range(batch_size_attention // split_slice_size):
|
63 |
start_idx = i * split_slice_size
|
64 |
end_idx = (i + 1) * split_slice_size
|
65 |
if do_split_2:
|
66 |
-
for i2 in range(
|
67 |
-
input_tokens // split_2_slice_size
|
68 |
-
): # pylint: disable=invalid-name
|
69 |
start_idx_2 = i2 * split_2_slice_size
|
70 |
end_idx_2 = (i2 + 1) * split_2_slice_size
|
71 |
-
hidden_states[
|
72 |
-
start_idx:end_idx, start_idx_2:end_idx_2
|
73 |
-
] = original_torch_bmm(
|
74 |
input[start_idx:end_idx, start_idx_2:end_idx_2],
|
75 |
mat2[start_idx:end_idx, start_idx_2:end_idx_2],
|
76 |
-
out=out
|
77 |
)
|
78 |
else:
|
79 |
hidden_states[start_idx:end_idx] = original_torch_bmm(
|
80 |
-
input[start_idx:end_idx],
|
|
|
|
|
81 |
)
|
82 |
else:
|
83 |
return original_torch_bmm(input, mat2, out=out)
|
84 |
return hidden_states
|
85 |
|
86 |
-
|
87 |
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
|
88 |
-
|
89 |
-
|
90 |
-
def scaled_dot_product_attention(
|
91 |
-
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False
|
92 |
-
):
|
93 |
-
# ARC GPUs can't allocate more than 4GB to a single block, Slice it:
|
94 |
shape_one, batch_size_attention, query_tokens, shape_four = query.shape
|
95 |
block_multiply = 2.4 if query.dtype == torch.float32 else 1.2
|
96 |
-
block_size = (
|
97 |
-
(shape_one * batch_size_attention * query_tokens * shape_four)
|
98 |
-
/ 1024
|
99 |
-
* block_multiply
|
100 |
-
) # MB
|
101 |
split_slice_size = batch_size_attention
|
102 |
if block_size >= 4000:
|
103 |
do_split = True
|
104 |
-
#
|
105 |
-
while (
|
106 |
-
(shape_one * split_slice_size * query_tokens * shape_four)
|
107 |
-
/ 1024
|
108 |
-
* block_multiply
|
109 |
-
) > 4000:
|
110 |
split_slice_size = split_slice_size // 2
|
111 |
if split_slice_size <= 1:
|
112 |
split_slice_size = 1
|
@@ -114,20 +79,12 @@ def scaled_dot_product_attention(
|
|
114 |
else:
|
115 |
do_split = False
|
116 |
|
117 |
-
split_block_size = (
|
118 |
-
(shape_one * split_slice_size * query_tokens * shape_four)
|
119 |
-
/ 1024
|
120 |
-
* block_multiply
|
121 |
-
) # MB
|
122 |
split_2_slice_size = query_tokens
|
123 |
if split_block_size >= 4000:
|
124 |
do_split_2 = True
|
125 |
-
#
|
126 |
-
while (
|
127 |
-
(shape_one * split_slice_size * split_2_slice_size * shape_four)
|
128 |
-
/ 1024
|
129 |
-
* block_multiply
|
130 |
-
) > 4000:
|
131 |
split_2_slice_size = split_2_slice_size // 2
|
132 |
if split_2_slice_size <= 1:
|
133 |
split_2_slice_size = 1
|
@@ -141,49 +98,31 @@ def scaled_dot_product_attention(
|
|
141 |
start_idx = i * split_slice_size
|
142 |
end_idx = (i + 1) * split_slice_size
|
143 |
if do_split_2:
|
144 |
-
for i2 in range(
|
145 |
-
query_tokens // split_2_slice_size
|
146 |
-
): # pylint: disable=invalid-name
|
147 |
start_idx_2 = i2 * split_2_slice_size
|
148 |
end_idx_2 = (i2 + 1) * split_2_slice_size
|
149 |
-
hidden_states[
|
150 |
-
:, start_idx:end_idx, start_idx_2:end_idx_2
|
151 |
-
] = original_scaled_dot_product_attention(
|
152 |
query[:, start_idx:end_idx, start_idx_2:end_idx_2],
|
153 |
key[:, start_idx:end_idx, start_idx_2:end_idx_2],
|
154 |
value[:, start_idx:end_idx, start_idx_2:end_idx_2],
|
155 |
-
attn_mask=attn_mask[:, start_idx:end_idx, start_idx_2:end_idx_2]
|
156 |
-
|
157 |
-
else attn_mask,
|
158 |
-
dropout_p=dropout_p,
|
159 |
-
is_causal=is_causal,
|
160 |
)
|
161 |
else:
|
162 |
-
hidden_states[
|
163 |
-
:, start_idx:end_idx
|
164 |
-
] = original_scaled_dot_product_attention(
|
165 |
query[:, start_idx:end_idx],
|
166 |
key[:, start_idx:end_idx],
|
167 |
value[:, start_idx:end_idx],
|
168 |
-
attn_mask=attn_mask[:, start_idx:end_idx]
|
169 |
-
|
170 |
-
else attn_mask,
|
171 |
-
dropout_p=dropout_p,
|
172 |
-
is_causal=is_causal,
|
173 |
)
|
174 |
else:
|
175 |
return original_scaled_dot_product_attention(
|
176 |
-
query,
|
177 |
-
key,
|
178 |
-
value,
|
179 |
-
attn_mask=attn_mask,
|
180 |
-
dropout_p=dropout_p,
|
181 |
-
is_causal=is_causal,
|
182 |
)
|
183 |
return hidden_states
|
184 |
|
185 |
-
|
186 |
def attention_init():
|
187 |
-
#
|
188 |
torch.bmm = torch_bmm
|
189 |
torch.nn.functional.scaled_dot_product_attention = scaled_dot_product_attention
|
|
|
1 |
import torch
|
2 |
+
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
3 |
|
4 |
# pylint: disable=protected-access, missing-function-docstring, line-too-long
|
5 |
|
6 |
original_torch_bmm = torch.bmm
|
|
|
|
|
7 |
def torch_bmm(input, mat2, *, out=None):
|
8 |
if input.dtype != mat2.dtype:
|
9 |
mat2 = mat2.to(input.dtype)
|
10 |
|
11 |
+
#ARC GPUs can't allocate more than 4GB to a single block, Slice it:
|
12 |
+
batch_size_attention, input_tokens, mat2_shape = input.shape[0], input.shape[1], mat2.shape[2]
|
|
|
|
|
|
|
|
|
13 |
block_multiply = 2.4 if input.dtype == torch.float32 else 1.2
|
14 |
+
block_size = (batch_size_attention * input_tokens * mat2_shape) / 1024 * block_multiply #MB
|
|
|
|
|
15 |
split_slice_size = batch_size_attention
|
16 |
if block_size >= 4000:
|
17 |
do_split = True
|
18 |
+
#Find something divisible with the input_tokens
|
19 |
+
while ((split_slice_size * input_tokens * mat2_shape) / 1024 * block_multiply) > 4000:
|
|
|
|
|
20 |
split_slice_size = split_slice_size // 2
|
21 |
if split_slice_size <= 1:
|
22 |
split_slice_size = 1
|
|
|
24 |
else:
|
25 |
do_split = False
|
26 |
|
27 |
+
split_block_size = (split_slice_size * input_tokens * mat2_shape) / 1024 * block_multiply #MB
|
|
|
|
|
28 |
split_2_slice_size = input_tokens
|
29 |
if split_block_size >= 4000:
|
30 |
do_split_2 = True
|
31 |
+
#Find something divisible with the input_tokens
|
32 |
+
while ((split_slice_size * split_2_slice_size * mat2_shape) / 1024 * block_multiply) > 4000:
|
|
|
|
|
33 |
split_2_slice_size = split_2_slice_size // 2
|
34 |
if split_2_slice_size <= 1:
|
35 |
split_2_slice_size = 1
|
|
|
38 |
do_split_2 = False
|
39 |
|
40 |
if do_split:
|
41 |
+
hidden_states = torch.zeros(input.shape[0], input.shape[1], mat2.shape[2], device=input.device, dtype=input.dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
for i in range(batch_size_attention // split_slice_size):
|
43 |
start_idx = i * split_slice_size
|
44 |
end_idx = (i + 1) * split_slice_size
|
45 |
if do_split_2:
|
46 |
+
for i2 in range(input_tokens // split_2_slice_size): # pylint: disable=invalid-name
|
|
|
|
|
47 |
start_idx_2 = i2 * split_2_slice_size
|
48 |
end_idx_2 = (i2 + 1) * split_2_slice_size
|
49 |
+
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = original_torch_bmm(
|
|
|
|
|
50 |
input[start_idx:end_idx, start_idx_2:end_idx_2],
|
51 |
mat2[start_idx:end_idx, start_idx_2:end_idx_2],
|
52 |
+
out=out
|
53 |
)
|
54 |
else:
|
55 |
hidden_states[start_idx:end_idx] = original_torch_bmm(
|
56 |
+
input[start_idx:end_idx],
|
57 |
+
mat2[start_idx:end_idx],
|
58 |
+
out=out
|
59 |
)
|
60 |
else:
|
61 |
return original_torch_bmm(input, mat2, out=out)
|
62 |
return hidden_states
|
63 |
|
|
|
64 |
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
|
65 |
+
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False):
|
66 |
+
#ARC GPUs can't allocate more than 4GB to a single block, Slice it:
|
|
|
|
|
|
|
|
|
67 |
shape_one, batch_size_attention, query_tokens, shape_four = query.shape
|
68 |
block_multiply = 2.4 if query.dtype == torch.float32 else 1.2
|
69 |
+
block_size = (shape_one * batch_size_attention * query_tokens * shape_four) / 1024 * block_multiply #MB
|
|
|
|
|
|
|
|
|
70 |
split_slice_size = batch_size_attention
|
71 |
if block_size >= 4000:
|
72 |
do_split = True
|
73 |
+
#Find something divisible with the shape_one
|
74 |
+
while ((shape_one * split_slice_size * query_tokens * shape_four) / 1024 * block_multiply) > 4000:
|
|
|
|
|
|
|
|
|
75 |
split_slice_size = split_slice_size // 2
|
76 |
if split_slice_size <= 1:
|
77 |
split_slice_size = 1
|
|
|
79 |
else:
|
80 |
do_split = False
|
81 |
|
82 |
+
split_block_size = (shape_one * split_slice_size * query_tokens * shape_four) / 1024 * block_multiply #MB
|
|
|
|
|
|
|
|
|
83 |
split_2_slice_size = query_tokens
|
84 |
if split_block_size >= 4000:
|
85 |
do_split_2 = True
|
86 |
+
#Find something divisible with the batch_size_attention
|
87 |
+
while ((shape_one * split_slice_size * split_2_slice_size * shape_four) / 1024 * block_multiply) > 4000:
|
|
|
|
|
|
|
|
|
88 |
split_2_slice_size = split_2_slice_size // 2
|
89 |
if split_2_slice_size <= 1:
|
90 |
split_2_slice_size = 1
|
|
|
98 |
start_idx = i * split_slice_size
|
99 |
end_idx = (i + 1) * split_slice_size
|
100 |
if do_split_2:
|
101 |
+
for i2 in range(query_tokens // split_2_slice_size): # pylint: disable=invalid-name
|
|
|
|
|
102 |
start_idx_2 = i2 * split_2_slice_size
|
103 |
end_idx_2 = (i2 + 1) * split_2_slice_size
|
104 |
+
hidden_states[:, start_idx:end_idx, start_idx_2:end_idx_2] = original_scaled_dot_product_attention(
|
|
|
|
|
105 |
query[:, start_idx:end_idx, start_idx_2:end_idx_2],
|
106 |
key[:, start_idx:end_idx, start_idx_2:end_idx_2],
|
107 |
value[:, start_idx:end_idx, start_idx_2:end_idx_2],
|
108 |
+
attn_mask=attn_mask[:, start_idx:end_idx, start_idx_2:end_idx_2] if attn_mask is not None else attn_mask,
|
109 |
+
dropout_p=dropout_p, is_causal=is_causal
|
|
|
|
|
|
|
110 |
)
|
111 |
else:
|
112 |
+
hidden_states[:, start_idx:end_idx] = original_scaled_dot_product_attention(
|
|
|
|
|
113 |
query[:, start_idx:end_idx],
|
114 |
key[:, start_idx:end_idx],
|
115 |
value[:, start_idx:end_idx],
|
116 |
+
attn_mask=attn_mask[:, start_idx:end_idx] if attn_mask is not None else attn_mask,
|
117 |
+
dropout_p=dropout_p, is_causal=is_causal
|
|
|
|
|
|
|
118 |
)
|
119 |
else:
|
120 |
return original_scaled_dot_product_attention(
|
121 |
+
query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal
|
|
|
|
|
|
|
|
|
|
|
122 |
)
|
123 |
return hidden_states
|
124 |
|
|
|
125 |
def attention_init():
|
126 |
+
#ARC GPUs can't allocate more than 4GB to a single block:
|
127 |
torch.bmm = torch_bmm
|
128 |
torch.nn.functional.scaled_dot_product_attention = scaled_dot_product_attention
|
infer/modules/ipex/gradscaler.py
CHANGED
@@ -1,20 +1,15 @@
|
|
1 |
from collections import defaultdict
|
2 |
import torch
|
3 |
-
import intel_extension_for_pytorch as ipex
|
4 |
-
import intel_extension_for_pytorch._C as core
|
5 |
|
6 |
# pylint: disable=protected-access, missing-function-docstring, line-too-long
|
7 |
|
8 |
OptState = ipex.cpu.autocast._grad_scaler.OptState
|
9 |
_MultiDeviceReplicator = ipex.cpu.autocast._grad_scaler._MultiDeviceReplicator
|
10 |
-
_refresh_per_optimizer_state =
|
11 |
-
ipex.cpu.autocast._grad_scaler._refresh_per_optimizer_state
|
12 |
-
)
|
13 |
|
14 |
-
|
15 |
-
def _unscale_grads_(
|
16 |
-
self, optimizer, inv_scale, found_inf, allow_fp16
|
17 |
-
): # pylint: disable=unused-argument
|
18 |
per_device_inv_scale = _MultiDeviceReplicator(inv_scale)
|
19 |
per_device_found_inf = _MultiDeviceReplicator(found_inf)
|
20 |
|
@@ -48,9 +43,9 @@ def _unscale_grads_(
|
|
48 |
|
49 |
# -: is there a way to split by device and dtype without appending in the inner loop?
|
50 |
to_unscale = to_unscale.to("cpu")
|
51 |
-
per_device_and_dtype_grads[to_unscale.device][
|
52 |
-
to_unscale
|
53 |
-
)
|
54 |
|
55 |
for _, per_dtype_grads in per_device_and_dtype_grads.items():
|
56 |
for grads in per_dtype_grads.values():
|
@@ -62,7 +57,6 @@ def _unscale_grads_(
|
|
62 |
|
63 |
return per_device_found_inf._per_device_tensors
|
64 |
|
65 |
-
|
66 |
def unscale_(self, optimizer):
|
67 |
"""
|
68 |
Divides ("unscales") the optimizer's gradient tensors by the scale factor.
|
@@ -93,7 +87,7 @@ def unscale_(self, optimizer):
|
|
93 |
|
94 |
optimizer_state = self._per_optimizer_states[id(optimizer)]
|
95 |
|
96 |
-
if optimizer_state["stage"] is OptState.UNSCALED:
|
97 |
raise RuntimeError(
|
98 |
"unscale_() has already been called on this optimizer since the last update()."
|
99 |
)
|
@@ -102,17 +96,16 @@ def unscale_(self, optimizer):
|
|
102 |
|
103 |
# FP32 division can be imprecise for certain compile options, so we carry out the reciprocal in FP64.
|
104 |
assert self._scale is not None
|
105 |
-
inv_scale = (
|
106 |
-
|
|
|
107 |
)
|
108 |
-
found_inf = torch.full((1,), 0.0, dtype=torch.float32, device=self._scale.device)
|
109 |
|
110 |
optimizer_state["found_inf_per_device"] = self._unscale_grads_(
|
111 |
optimizer, inv_scale, found_inf, False
|
112 |
)
|
113 |
optimizer_state["stage"] = OptState.UNSCALED
|
114 |
|
115 |
-
|
116 |
def update(self, new_scale=None):
|
117 |
"""
|
118 |
Updates the scale factor.
|
@@ -178,7 +171,6 @@ def update(self, new_scale=None):
|
|
178 |
# To prepare for next iteration, clear the data collected from optimizers this iteration.
|
179 |
self._per_optimizer_states = defaultdict(_refresh_per_optimizer_state)
|
180 |
|
181 |
-
|
182 |
def gradscaler_init():
|
183 |
torch.xpu.amp.GradScaler = ipex.cpu.autocast._grad_scaler.GradScaler
|
184 |
torch.xpu.amp.GradScaler._unscale_grads_ = _unscale_grads_
|
|
|
1 |
from collections import defaultdict
|
2 |
import torch
|
3 |
+
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
4 |
+
import intel_extension_for_pytorch._C as core # pylint: disable=import-error, unused-import
|
5 |
|
6 |
# pylint: disable=protected-access, missing-function-docstring, line-too-long
|
7 |
|
8 |
OptState = ipex.cpu.autocast._grad_scaler.OptState
|
9 |
_MultiDeviceReplicator = ipex.cpu.autocast._grad_scaler._MultiDeviceReplicator
|
10 |
+
_refresh_per_optimizer_state = ipex.cpu.autocast._grad_scaler._refresh_per_optimizer_state
|
|
|
|
|
11 |
|
12 |
+
def _unscale_grads_(self, optimizer, inv_scale, found_inf, allow_fp16): # pylint: disable=unused-argument
|
|
|
|
|
|
|
13 |
per_device_inv_scale = _MultiDeviceReplicator(inv_scale)
|
14 |
per_device_found_inf = _MultiDeviceReplicator(found_inf)
|
15 |
|
|
|
43 |
|
44 |
# -: is there a way to split by device and dtype without appending in the inner loop?
|
45 |
to_unscale = to_unscale.to("cpu")
|
46 |
+
per_device_and_dtype_grads[to_unscale.device][
|
47 |
+
to_unscale.dtype
|
48 |
+
].append(to_unscale)
|
49 |
|
50 |
for _, per_dtype_grads in per_device_and_dtype_grads.items():
|
51 |
for grads in per_dtype_grads.values():
|
|
|
57 |
|
58 |
return per_device_found_inf._per_device_tensors
|
59 |
|
|
|
60 |
def unscale_(self, optimizer):
|
61 |
"""
|
62 |
Divides ("unscales") the optimizer's gradient tensors by the scale factor.
|
|
|
87 |
|
88 |
optimizer_state = self._per_optimizer_states[id(optimizer)]
|
89 |
|
90 |
+
if optimizer_state["stage"] is OptState.UNSCALED: # pylint: disable=no-else-raise
|
91 |
raise RuntimeError(
|
92 |
"unscale_() has already been called on this optimizer since the last update()."
|
93 |
)
|
|
|
96 |
|
97 |
# FP32 division can be imprecise for certain compile options, so we carry out the reciprocal in FP64.
|
98 |
assert self._scale is not None
|
99 |
+
inv_scale = self._scale.to("cpu").double().reciprocal().float().to(self._scale.device)
|
100 |
+
found_inf = torch.full(
|
101 |
+
(1,), 0.0, dtype=torch.float32, device=self._scale.device
|
102 |
)
|
|
|
103 |
|
104 |
optimizer_state["found_inf_per_device"] = self._unscale_grads_(
|
105 |
optimizer, inv_scale, found_inf, False
|
106 |
)
|
107 |
optimizer_state["stage"] = OptState.UNSCALED
|
108 |
|
|
|
109 |
def update(self, new_scale=None):
|
110 |
"""
|
111 |
Updates the scale factor.
|
|
|
171 |
# To prepare for next iteration, clear the data collected from optimizers this iteration.
|
172 |
self._per_optimizer_states = defaultdict(_refresh_per_optimizer_state)
|
173 |
|
|
|
174 |
def gradscaler_init():
|
175 |
torch.xpu.amp.GradScaler = ipex.cpu.autocast._grad_scaler.GradScaler
|
176 |
torch.xpu.amp.GradScaler._unscale_grads_ = _unscale_grads_
|
infer/modules/ipex/hijacks.py
CHANGED
@@ -1,59 +1,45 @@
|
|
1 |
import contextlib
|
2 |
import importlib
|
3 |
import torch
|
4 |
-
import intel_extension_for_pytorch as ipex
|
5 |
|
6 |
# pylint: disable=protected-access, missing-function-docstring, line-too-long, unnecessary-lambda, no-else-return
|
7 |
|
8 |
-
|
9 |
-
class CondFunc: # pylint: disable=missing-class-docstring
|
10 |
def __new__(cls, orig_func, sub_func, cond_func):
|
11 |
self = super(CondFunc, cls).__new__(cls)
|
12 |
if isinstance(orig_func, str):
|
13 |
-
func_path = orig_func.split(
|
14 |
-
for i in range(len(func_path)
|
15 |
try:
|
16 |
-
resolved_obj = importlib.import_module(
|
17 |
break
|
18 |
except ImportError:
|
19 |
pass
|
20 |
for attr_name in func_path[i:-1]:
|
21 |
resolved_obj = getattr(resolved_obj, attr_name)
|
22 |
orig_func = getattr(resolved_obj, func_path[-1])
|
23 |
-
setattr(
|
24 |
-
resolved_obj,
|
25 |
-
func_path[-1],
|
26 |
-
lambda *args, **kwargs: self(*args, **kwargs),
|
27 |
-
)
|
28 |
self.__init__(orig_func, sub_func, cond_func)
|
29 |
return lambda *args, **kwargs: self(*args, **kwargs)
|
30 |
-
|
31 |
def __init__(self, orig_func, sub_func, cond_func):
|
32 |
self.__orig_func = orig_func
|
33 |
self.__sub_func = sub_func
|
34 |
self.__cond_func = cond_func
|
35 |
-
|
36 |
def __call__(self, *args, **kwargs):
|
37 |
if not self.__cond_func or self.__cond_func(self.__orig_func, *args, **kwargs):
|
38 |
return self.__sub_func(self.__orig_func, *args, **kwargs)
|
39 |
else:
|
40 |
return self.__orig_func(*args, **kwargs)
|
41 |
|
42 |
-
|
43 |
_utils = torch.utils.data._utils
|
44 |
-
|
45 |
-
|
46 |
def _shutdown_workers(self):
|
47 |
-
if
|
48 |
-
torch.utils.data._utils is None
|
49 |
-
or torch.utils.data._utils.python_exit_status is True
|
50 |
-
or torch.utils.data._utils.python_exit_status is None
|
51 |
-
):
|
52 |
return
|
53 |
if hasattr(self, "_shutdown") and not self._shutdown:
|
54 |
self._shutdown = True
|
55 |
try:
|
56 |
-
if hasattr(self,
|
57 |
self._pin_memory_thread_done_event.set()
|
58 |
self._worker_result_queue.put((None, None))
|
59 |
self._pin_memory_thread.join()
|
@@ -63,292 +49,145 @@ def _shutdown_workers(self):
|
|
63 |
for worker_id in range(len(self._workers)):
|
64 |
if self._persistent_workers or self._workers_status[worker_id]:
|
65 |
self._mark_worker_as_unavailable(worker_id, shutdown=True)
|
66 |
-
for w in self._workers:
|
67 |
w.join(timeout=torch.utils.data._utils.MP_STATUS_CHECK_INTERVAL)
|
68 |
-
for q in self._index_queues:
|
69 |
q.cancel_join_thread()
|
70 |
q.close()
|
71 |
finally:
|
72 |
if self._worker_pids_set:
|
73 |
torch.utils.data._utils.signal_handling._remove_worker_pids(id(self))
|
74 |
self._worker_pids_set = False
|
75 |
-
for w in self._workers:
|
76 |
if w.is_alive():
|
77 |
w.terminate()
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
torch.nn.Module
|
82 |
-
): # pylint: disable=missing-class-docstring, unused-argument, too-few-public-methods
|
83 |
-
def __new__(
|
84 |
-
cls, module, device_ids=None, output_device=None, dim=0
|
85 |
-
): # pylint: disable=unused-argument
|
86 |
if isinstance(device_ids, list) and len(device_ids) > 1:
|
87 |
print("IPEX backend doesn't support DataParallel on multiple XPU devices")
|
88 |
return module.to("xpu")
|
89 |
|
90 |
-
|
91 |
-
def return_null_context(*args, **kwargs): # pylint: disable=unused-argument
|
92 |
return contextlib.nullcontext()
|
93 |
|
94 |
-
|
95 |
def check_device(device):
|
96 |
-
return bool(
|
97 |
-
(isinstance(device, torch.device) and device.type == "cuda")
|
98 |
-
or (isinstance(device, str) and "cuda" in device)
|
99 |
-
or isinstance(device, int)
|
100 |
-
)
|
101 |
-
|
102 |
|
103 |
def return_xpu(device):
|
104 |
-
return (
|
105 |
-
f"xpu:{device[-1]}"
|
106 |
-
if isinstance(device, str) and ":" in device
|
107 |
-
else f"xpu:{device}"
|
108 |
-
if isinstance(device, int)
|
109 |
-
else torch.device("xpu")
|
110 |
-
if isinstance(device, torch.device)
|
111 |
-
else "xpu"
|
112 |
-
)
|
113 |
-
|
114 |
|
115 |
def ipex_no_cuda(orig_func, *args, **kwargs):
|
116 |
torch.cuda.is_available = lambda: False
|
117 |
orig_func(*args, **kwargs)
|
118 |
torch.cuda.is_available = torch.xpu.is_available
|
119 |
|
120 |
-
|
121 |
original_autocast = torch.autocast
|
122 |
-
|
123 |
-
|
124 |
def ipex_autocast(*args, **kwargs):
|
125 |
if len(args) > 0 and args[0] == "cuda":
|
126 |
return original_autocast("xpu", *args[1:], **kwargs)
|
127 |
else:
|
128 |
return original_autocast(*args, **kwargs)
|
129 |
|
130 |
-
|
131 |
original_torch_cat = torch.cat
|
132 |
-
|
133 |
-
|
134 |
def torch_cat(tensor, *args, **kwargs):
|
135 |
-
if len(tensor) == 3 and (
|
136 |
-
tensor[0].
|
137 |
-
):
|
138 |
-
return original_torch_cat(
|
139 |
-
[tensor[0].to(tensor[1].dtype), tensor[1], tensor[2].to(tensor[1].dtype)],
|
140 |
-
*args,
|
141 |
-
**kwargs,
|
142 |
-
)
|
143 |
else:
|
144 |
return original_torch_cat(tensor, *args, **kwargs)
|
145 |
|
146 |
-
|
147 |
original_interpolate = torch.nn.functional.interpolate
|
148 |
-
|
149 |
-
|
150 |
-
def interpolate(
|
151 |
-
tensor,
|
152 |
-
size=None,
|
153 |
-
scale_factor=None,
|
154 |
-
mode="nearest",
|
155 |
-
align_corners=None,
|
156 |
-
recompute_scale_factor=None,
|
157 |
-
antialias=False,
|
158 |
-
): # pylint: disable=too-many-arguments
|
159 |
if antialias or align_corners is not None:
|
160 |
return_device = tensor.device
|
161 |
return_dtype = tensor.dtype
|
162 |
-
return original_interpolate(
|
163 |
-
|
164 |
-
size=size,
|
165 |
-
scale_factor=scale_factor,
|
166 |
-
mode=mode,
|
167 |
-
align_corners=align_corners,
|
168 |
-
recompute_scale_factor=recompute_scale_factor,
|
169 |
-
antialias=antialias,
|
170 |
-
).to(return_device, dtype=return_dtype)
|
171 |
else:
|
172 |
-
return original_interpolate(
|
173 |
-
|
174 |
-
size=size,
|
175 |
-
scale_factor=scale_factor,
|
176 |
-
mode=mode,
|
177 |
-
align_corners=align_corners,
|
178 |
-
recompute_scale_factor=recompute_scale_factor,
|
179 |
-
antialias=antialias,
|
180 |
-
)
|
181 |
-
|
182 |
|
183 |
original_linalg_solve = torch.linalg.solve
|
184 |
-
|
185 |
-
|
186 |
-
def linalg_solve(A, B, *args, **kwargs): # pylint: disable=invalid-name
|
187 |
if A.device != torch.device("cpu") or B.device != torch.device("cpu"):
|
188 |
return_device = A.device
|
189 |
-
return original_linalg_solve(A.to("cpu"), B.to("cpu"), *args, **kwargs).to(
|
190 |
-
return_device
|
191 |
-
)
|
192 |
else:
|
193 |
return original_linalg_solve(A, B, *args, **kwargs)
|
194 |
|
195 |
-
|
196 |
def ipex_hijacks():
|
197 |
-
CondFunc(
|
198 |
-
|
199 |
-
lambda orig_func, self, device=None, *args, **kwargs:
|
200 |
-
|
201 |
-
),
|
202 |
-
lambda orig_func, self, device=None, *args, **kwargs: check_device(device)
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
)
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
lambda orig_func, *args, device=None, **kwargs: orig_func(
|
214 |
-
|
215 |
-
|
216 |
-
lambda orig_func, *args, device=None, **kwargs:
|
217 |
-
|
218 |
-
CondFunc(
|
219 |
-
|
220 |
-
lambda orig_func, *args,
|
221 |
-
|
222 |
-
),
|
223 |
-
lambda orig_func, *args,
|
224 |
-
|
225 |
-
|
226 |
-
CondFunc(
|
227 |
-
"torch.randn",
|
228 |
-
lambda orig_func, *args, device=None, **kwargs: orig_func(
|
229 |
-
*args, device=return_xpu(device), **kwargs
|
230 |
-
),
|
231 |
-
lambda orig_func, *args, device=None, **kwargs: check_device(device),
|
232 |
-
)
|
233 |
-
CondFunc(
|
234 |
-
"torch.ones",
|
235 |
-
lambda orig_func, *args, device=None, **kwargs: orig_func(
|
236 |
-
*args, device=return_xpu(device), **kwargs
|
237 |
-
),
|
238 |
-
lambda orig_func, *args, device=None, **kwargs: check_device(device),
|
239 |
-
)
|
240 |
-
CondFunc(
|
241 |
-
"torch.zeros",
|
242 |
-
lambda orig_func, *args, device=None, **kwargs: orig_func(
|
243 |
-
*args, device=return_xpu(device), **kwargs
|
244 |
-
),
|
245 |
-
lambda orig_func, *args, device=None, **kwargs: check_device(device),
|
246 |
-
)
|
247 |
-
CondFunc(
|
248 |
-
"torch.tensor",
|
249 |
-
lambda orig_func, *args, device=None, **kwargs: orig_func(
|
250 |
-
*args, device=return_xpu(device), **kwargs
|
251 |
-
),
|
252 |
-
lambda orig_func, *args, device=None, **kwargs: check_device(device),
|
253 |
-
)
|
254 |
-
CondFunc(
|
255 |
-
"torch.linspace",
|
256 |
-
lambda orig_func, *args, device=None, **kwargs: orig_func(
|
257 |
-
*args, device=return_xpu(device), **kwargs
|
258 |
-
),
|
259 |
-
lambda orig_func, *args, device=None, **kwargs: check_device(device),
|
260 |
-
)
|
261 |
-
|
262 |
-
CondFunc(
|
263 |
-
"torch.Generator",
|
264 |
lambda orig_func, device=None: torch.xpu.Generator(device),
|
265 |
-
lambda orig_func, device=None: device is not None
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
lambda orig_func,
|
284 |
-
|
285 |
-
CondFunc(
|
286 |
-
|
287 |
-
lambda orig_func,
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
*args,
|
296 |
-
**kwargs,
|
297 |
-
),
|
298 |
-
lambda orig_func, input, *args, **kwargs: input.device != torch.device("cpu"),
|
299 |
-
)
|
300 |
-
|
301 |
-
# Functions with dtype errors:
|
302 |
-
CondFunc(
|
303 |
-
"torch.nn.modules.GroupNorm.forward",
|
304 |
-
lambda orig_func, self, input: orig_func(
|
305 |
-
self, input.to(self.weight.data.dtype)
|
306 |
-
),
|
307 |
-
lambda orig_func, self, input: input.dtype != self.weight.data.dtype,
|
308 |
-
)
|
309 |
-
CondFunc(
|
310 |
-
"torch.nn.modules.linear.Linear.forward",
|
311 |
-
lambda orig_func, self, input: orig_func(
|
312 |
-
self, input.to(self.weight.data.dtype)
|
313 |
-
),
|
314 |
-
lambda orig_func, self, input: input.dtype != self.weight.data.dtype,
|
315 |
-
)
|
316 |
-
CondFunc(
|
317 |
-
"torch.nn.modules.conv.Conv2d.forward",
|
318 |
-
lambda orig_func, self, input: orig_func(
|
319 |
-
self, input.to(self.weight.data.dtype)
|
320 |
-
),
|
321 |
-
lambda orig_func, self, input: input.dtype != self.weight.data.dtype,
|
322 |
-
)
|
323 |
-
CondFunc(
|
324 |
-
"torch.nn.functional.layer_norm",
|
325 |
-
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs: orig_func(
|
326 |
-
input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs
|
327 |
-
),
|
328 |
-
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs: weight
|
329 |
-
is not None
|
330 |
-
and input.dtype != weight.data.dtype,
|
331 |
-
)
|
332 |
-
|
333 |
-
# Diffusers Float64 (ARC GPUs doesn't support double or Float64):
|
334 |
if not torch.xpu.has_fp64_dtype():
|
335 |
-
CondFunc(
|
336 |
-
|
337 |
-
|
338 |
-
lambda orig_func, ndarray: ndarray.dtype == float,
|
339 |
-
)
|
340 |
|
341 |
-
#
|
342 |
-
CondFunc(
|
343 |
-
"torch.utils.data.dataloader._BaseDataLoaderIter.__init__",
|
344 |
lambda orig_func, *args, **kwargs: ipex_no_cuda(orig_func, *args, **kwargs),
|
345 |
-
lambda orig_func, *args, **kwargs: True
|
346 |
-
)
|
347 |
|
348 |
-
#
|
349 |
-
torch.utils.data.dataloader._MultiProcessingDataLoaderIter._shutdown_workers =
|
350 |
-
_shutdown_workers
|
351 |
-
)
|
352 |
torch.nn.DataParallel = DummyDataParallel
|
353 |
torch.autocast = ipex_autocast
|
354 |
torch.cat = torch_cat
|
|
|
1 |
import contextlib
|
2 |
import importlib
|
3 |
import torch
|
4 |
+
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
5 |
|
6 |
# pylint: disable=protected-access, missing-function-docstring, line-too-long, unnecessary-lambda, no-else-return
|
7 |
|
8 |
+
class CondFunc: # pylint: disable=missing-class-docstring
|
|
|
9 |
def __new__(cls, orig_func, sub_func, cond_func):
|
10 |
self = super(CondFunc, cls).__new__(cls)
|
11 |
if isinstance(orig_func, str):
|
12 |
+
func_path = orig_func.split('.')
|
13 |
+
for i in range(len(func_path)-1, -1, -1):
|
14 |
try:
|
15 |
+
resolved_obj = importlib.import_module('.'.join(func_path[:i]))
|
16 |
break
|
17 |
except ImportError:
|
18 |
pass
|
19 |
for attr_name in func_path[i:-1]:
|
20 |
resolved_obj = getattr(resolved_obj, attr_name)
|
21 |
orig_func = getattr(resolved_obj, func_path[-1])
|
22 |
+
setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
|
|
|
|
|
|
|
|
|
23 |
self.__init__(orig_func, sub_func, cond_func)
|
24 |
return lambda *args, **kwargs: self(*args, **kwargs)
|
|
|
25 |
def __init__(self, orig_func, sub_func, cond_func):
|
26 |
self.__orig_func = orig_func
|
27 |
self.__sub_func = sub_func
|
28 |
self.__cond_func = cond_func
|
|
|
29 |
def __call__(self, *args, **kwargs):
|
30 |
if not self.__cond_func or self.__cond_func(self.__orig_func, *args, **kwargs):
|
31 |
return self.__sub_func(self.__orig_func, *args, **kwargs)
|
32 |
else:
|
33 |
return self.__orig_func(*args, **kwargs)
|
34 |
|
|
|
35 |
_utils = torch.utils.data._utils
|
|
|
|
|
36 |
def _shutdown_workers(self):
|
37 |
+
if torch.utils.data._utils is None or torch.utils.data._utils.python_exit_status is True or torch.utils.data._utils.python_exit_status is None:
|
|
|
|
|
|
|
|
|
38 |
return
|
39 |
if hasattr(self, "_shutdown") and not self._shutdown:
|
40 |
self._shutdown = True
|
41 |
try:
|
42 |
+
if hasattr(self, '_pin_memory_thread'):
|
43 |
self._pin_memory_thread_done_event.set()
|
44 |
self._worker_result_queue.put((None, None))
|
45 |
self._pin_memory_thread.join()
|
|
|
49 |
for worker_id in range(len(self._workers)):
|
50 |
if self._persistent_workers or self._workers_status[worker_id]:
|
51 |
self._mark_worker_as_unavailable(worker_id, shutdown=True)
|
52 |
+
for w in self._workers: # pylint: disable=invalid-name
|
53 |
w.join(timeout=torch.utils.data._utils.MP_STATUS_CHECK_INTERVAL)
|
54 |
+
for q in self._index_queues: # pylint: disable=invalid-name
|
55 |
q.cancel_join_thread()
|
56 |
q.close()
|
57 |
finally:
|
58 |
if self._worker_pids_set:
|
59 |
torch.utils.data._utils.signal_handling._remove_worker_pids(id(self))
|
60 |
self._worker_pids_set = False
|
61 |
+
for w in self._workers: # pylint: disable=invalid-name
|
62 |
if w.is_alive():
|
63 |
w.terminate()
|
64 |
|
65 |
+
class DummyDataParallel(torch.nn.Module): # pylint: disable=missing-class-docstring, unused-argument, too-few-public-methods
|
66 |
+
def __new__(cls, module, device_ids=None, output_device=None, dim=0): # pylint: disable=unused-argument
|
|
|
|
|
|
|
|
|
|
|
67 |
if isinstance(device_ids, list) and len(device_ids) > 1:
|
68 |
print("IPEX backend doesn't support DataParallel on multiple XPU devices")
|
69 |
return module.to("xpu")
|
70 |
|
71 |
+
def return_null_context(*args, **kwargs): # pylint: disable=unused-argument
|
|
|
72 |
return contextlib.nullcontext()
|
73 |
|
|
|
74 |
def check_device(device):
|
75 |
+
return bool((isinstance(device, torch.device) and device.type == "cuda") or (isinstance(device, str) and "cuda" in device) or isinstance(device, int))
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
def return_xpu(device):
|
78 |
+
return f"xpu:{device[-1]}" if isinstance(device, str) and ":" in device else f"xpu:{device}" if isinstance(device, int) else torch.device("xpu") if isinstance(device, torch.device) else "xpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
def ipex_no_cuda(orig_func, *args, **kwargs):
|
81 |
torch.cuda.is_available = lambda: False
|
82 |
orig_func(*args, **kwargs)
|
83 |
torch.cuda.is_available = torch.xpu.is_available
|
84 |
|
|
|
85 |
original_autocast = torch.autocast
|
|
|
|
|
86 |
def ipex_autocast(*args, **kwargs):
|
87 |
if len(args) > 0 and args[0] == "cuda":
|
88 |
return original_autocast("xpu", *args[1:], **kwargs)
|
89 |
else:
|
90 |
return original_autocast(*args, **kwargs)
|
91 |
|
|
|
92 |
original_torch_cat = torch.cat
|
|
|
|
|
93 |
def torch_cat(tensor, *args, **kwargs):
|
94 |
+
if len(tensor) == 3 and (tensor[0].dtype != tensor[1].dtype or tensor[2].dtype != tensor[1].dtype):
|
95 |
+
return original_torch_cat([tensor[0].to(tensor[1].dtype), tensor[1], tensor[2].to(tensor[1].dtype)], *args, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
else:
|
97 |
return original_torch_cat(tensor, *args, **kwargs)
|
98 |
|
|
|
99 |
original_interpolate = torch.nn.functional.interpolate
|
100 |
+
def interpolate(tensor, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None, antialias=False): # pylint: disable=too-many-arguments
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
if antialias or align_corners is not None:
|
102 |
return_device = tensor.device
|
103 |
return_dtype = tensor.dtype
|
104 |
+
return original_interpolate(tensor.to("cpu", dtype=torch.float32), size=size, scale_factor=scale_factor, mode=mode,
|
105 |
+
align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias).to(return_device, dtype=return_dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
else:
|
107 |
+
return original_interpolate(tensor, size=size, scale_factor=scale_factor, mode=mode,
|
108 |
+
align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
original_linalg_solve = torch.linalg.solve
|
111 |
+
def linalg_solve(A, B, *args, **kwargs): # pylint: disable=invalid-name
|
|
|
|
|
112 |
if A.device != torch.device("cpu") or B.device != torch.device("cpu"):
|
113 |
return_device = A.device
|
114 |
+
return original_linalg_solve(A.to("cpu"), B.to("cpu"), *args, **kwargs).to(return_device)
|
|
|
|
|
115 |
else:
|
116 |
return original_linalg_solve(A, B, *args, **kwargs)
|
117 |
|
|
|
118 |
def ipex_hijacks():
|
119 |
+
CondFunc('torch.Tensor.to',
|
120 |
+
lambda orig_func, self, device=None, *args, **kwargs: orig_func(self, return_xpu(device), *args, **kwargs),
|
121 |
+
lambda orig_func, self, device=None, *args, **kwargs: check_device(device))
|
122 |
+
CondFunc('torch.Tensor.cuda',
|
123 |
+
lambda orig_func, self, device=None, *args, **kwargs: orig_func(self, return_xpu(device), *args, **kwargs),
|
124 |
+
lambda orig_func, self, device=None, *args, **kwargs: check_device(device))
|
125 |
+
CondFunc('torch.empty',
|
126 |
+
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs),
|
127 |
+
lambda orig_func, *args, device=None, **kwargs: check_device(device))
|
128 |
+
CondFunc('torch.load',
|
129 |
+
lambda orig_func, *args, map_location=None, **kwargs: orig_func(*args, return_xpu(map_location), **kwargs),
|
130 |
+
lambda orig_func, *args, map_location=None, **kwargs: map_location is None or check_device(map_location))
|
131 |
+
CondFunc('torch.randn',
|
132 |
+
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs),
|
133 |
+
lambda orig_func, *args, device=None, **kwargs: check_device(device))
|
134 |
+
CondFunc('torch.ones',
|
135 |
+
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs),
|
136 |
+
lambda orig_func, *args, device=None, **kwargs: check_device(device))
|
137 |
+
CondFunc('torch.zeros',
|
138 |
+
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs),
|
139 |
+
lambda orig_func, *args, device=None, **kwargs: check_device(device))
|
140 |
+
CondFunc('torch.tensor',
|
141 |
+
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs),
|
142 |
+
lambda orig_func, *args, device=None, **kwargs: check_device(device))
|
143 |
+
CondFunc('torch.linspace',
|
144 |
+
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs),
|
145 |
+
lambda orig_func, *args, device=None, **kwargs: check_device(device))
|
146 |
+
|
147 |
+
CondFunc('torch.Generator',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
lambda orig_func, device=None: torch.xpu.Generator(device),
|
149 |
+
lambda orig_func, device=None: device is not None and device != torch.device("cpu") and device != "cpu")
|
150 |
+
|
151 |
+
CondFunc('torch.batch_norm',
|
152 |
+
lambda orig_func, input, weight, bias, *args, **kwargs: orig_func(input,
|
153 |
+
weight if weight is not None else torch.ones(input.size()[1], device=input.device),
|
154 |
+
bias if bias is not None else torch.zeros(input.size()[1], device=input.device), *args, **kwargs),
|
155 |
+
lambda orig_func, input, *args, **kwargs: input.device != torch.device("cpu"))
|
156 |
+
CondFunc('torch.instance_norm',
|
157 |
+
lambda orig_func, input, weight, bias, *args, **kwargs: orig_func(input,
|
158 |
+
weight if weight is not None else torch.ones(input.size()[1], device=input.device),
|
159 |
+
bias if bias is not None else torch.zeros(input.size()[1], device=input.device), *args, **kwargs),
|
160 |
+
lambda orig_func, input, *args, **kwargs: input.device != torch.device("cpu"))
|
161 |
+
|
162 |
+
#Functions with dtype errors:
|
163 |
+
CondFunc('torch.nn.modules.GroupNorm.forward',
|
164 |
+
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
|
165 |
+
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
|
166 |
+
CondFunc('torch.nn.modules.linear.Linear.forward',
|
167 |
+
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
|
168 |
+
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
|
169 |
+
CondFunc('torch.nn.modules.conv.Conv2d.forward',
|
170 |
+
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
|
171 |
+
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
|
172 |
+
CondFunc('torch.nn.functional.layer_norm',
|
173 |
+
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
|
174 |
+
orig_func(input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs),
|
175 |
+
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
|
176 |
+
weight is not None and input.dtype != weight.data.dtype)
|
177 |
+
|
178 |
+
#Diffusers Float64 (ARC GPUs doesn't support double or Float64):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
if not torch.xpu.has_fp64_dtype():
|
180 |
+
CondFunc('torch.from_numpy',
|
181 |
+
lambda orig_func, ndarray: orig_func(ndarray.astype('float32')),
|
182 |
+
lambda orig_func, ndarray: ndarray.dtype == float)
|
|
|
|
|
183 |
|
184 |
+
#Broken functions when torch.cuda.is_available is True:
|
185 |
+
CondFunc('torch.utils.data.dataloader._BaseDataLoaderIter.__init__',
|
|
|
186 |
lambda orig_func, *args, **kwargs: ipex_no_cuda(orig_func, *args, **kwargs),
|
187 |
+
lambda orig_func, *args, **kwargs: True)
|
|
|
188 |
|
189 |
+
#Functions that make compile mad with CondFunc:
|
190 |
+
torch.utils.data.dataloader._MultiProcessingDataLoaderIter._shutdown_workers = _shutdown_workers
|
|
|
|
|
191 |
torch.nn.DataParallel = DummyDataParallel
|
192 |
torch.autocast = ipex_autocast
|
193 |
torch.cat = torch_cat
|
infer/modules/train/train.py
CHANGED
@@ -17,15 +17,12 @@ n_gpus = len(hps.gpus.split("-"))
|
|
17 |
from random import randint, shuffle
|
18 |
|
19 |
import torch
|
20 |
-
|
21 |
try:
|
22 |
-
import intel_extension_for_pytorch as ipex
|
23 |
-
|
24 |
if torch.xpu.is_available():
|
25 |
from infer.modules.ipex import ipex_init
|
26 |
from infer.modules.ipex.gradscaler import gradscaler_init
|
27 |
from torch.xpu.amp import autocast
|
28 |
-
|
29 |
GradScaler = gradscaler_init()
|
30 |
ipex_init()
|
31 |
else:
|
|
|
17 |
from random import randint, shuffle
|
18 |
|
19 |
import torch
|
|
|
20 |
try:
|
21 |
+
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
|
|
22 |
if torch.xpu.is_available():
|
23 |
from infer.modules.ipex import ipex_init
|
24 |
from infer.modules.ipex.gradscaler import gradscaler_init
|
25 |
from torch.xpu.amp import autocast
|
|
|
26 |
GradScaler = gradscaler_init()
|
27 |
ipex_init()
|
28 |
else:
|
infer/modules/vc/modules.py
CHANGED
@@ -209,9 +209,7 @@ class VC:
|
|
209 |
f0_file,
|
210 |
)
|
211 |
if self.tgt_sr != resample_sr >= 16000:
|
212 |
-
tgt_sr = resample_sr
|
213 |
-
else:
|
214 |
-
tgt_sr = self.tgt_sr
|
215 |
index_info = (
|
216 |
"Index:\n%s." % file_index
|
217 |
if os.path.exists(file_index)
|
@@ -220,7 +218,7 @@ class VC:
|
|
220 |
return (
|
221 |
"Success.\n%s\nTime:\nnpy: %.2fs, f0: %.2fs, infer: %.2fs."
|
222 |
% (index_info, *times),
|
223 |
-
(tgt_sr, audio_opt),
|
224 |
)
|
225 |
except:
|
226 |
info = traceback.format_exc()
|
@@ -288,13 +286,14 @@ class VC:
|
|
288 |
tgt_sr,
|
289 |
)
|
290 |
else:
|
291 |
-
path = "%s/%s.%s" % (
|
292 |
-
opt_root,
|
293 |
-
os.path.basename(path),
|
294 |
-
format1,
|
295 |
-
)
|
296 |
with BytesIO() as wavf:
|
297 |
-
sf.write(
|
|
|
|
|
|
|
|
|
|
|
298 |
wavf.seek(0, 0)
|
299 |
with open(path, "wb") as outf:
|
300 |
wav2(wavf, outf, format1)
|
|
|
209 |
f0_file,
|
210 |
)
|
211 |
if self.tgt_sr != resample_sr >= 16000:
|
212 |
+
self.tgt_sr = resample_sr
|
|
|
|
|
213 |
index_info = (
|
214 |
"Index:\n%s." % file_index
|
215 |
if os.path.exists(file_index)
|
|
|
218 |
return (
|
219 |
"Success.\n%s\nTime:\nnpy: %.2fs, f0: %.2fs, infer: %.2fs."
|
220 |
% (index_info, *times),
|
221 |
+
(self.tgt_sr, audio_opt),
|
222 |
)
|
223 |
except:
|
224 |
info = traceback.format_exc()
|
|
|
286 |
tgt_sr,
|
287 |
)
|
288 |
else:
|
289 |
+
path = "%s/%s.%s" % (opt_root, os.path.basename(path), format1)
|
|
|
|
|
|
|
|
|
290 |
with BytesIO() as wavf:
|
291 |
+
sf.write(
|
292 |
+
wavf,
|
293 |
+
audio_opt,
|
294 |
+
tgt_sr,
|
295 |
+
format="wav"
|
296 |
+
)
|
297 |
wavf.seek(0, 0)
|
298 |
with open(path, "wb") as outf:
|
299 |
wav2(wavf, outf, format1)
|
requirements-dml.txt
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
joblib>=1.1.0
|
2 |
numba==0.56.4
|
3 |
numpy==1.23.5
|
|
|
1 |
+
gdown
|
2 |
+
mega.py
|
3 |
joblib>=1.1.0
|
4 |
numba==0.56.4
|
5 |
numpy==1.23.5
|
requirements.txt
CHANGED
@@ -1,12 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
joblib>=1.1.0
|
2 |
numba==0.56.4
|
3 |
-
numpy==1.
|
4 |
scipy
|
5 |
librosa==0.9.1
|
6 |
llvmlite==0.39.0
|
7 |
fairseq==0.12.2
|
8 |
faiss-cpu==1.7.3
|
9 |
-
gradio==3.
|
10 |
Cython
|
11 |
pydub>=0.25.1
|
12 |
soundfile>=0.12.1
|
@@ -45,3 +50,4 @@ fastapi==0.88
|
|
45 |
ffmpy==0.3.1
|
46 |
python-dotenv>=1.0.0
|
47 |
av
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
torchaudio
|
4 |
+
gdown
|
5 |
+
mega.py
|
6 |
joblib>=1.1.0
|
7 |
numba==0.56.4
|
8 |
+
numpy==1.22.0
|
9 |
scipy
|
10 |
librosa==0.9.1
|
11 |
llvmlite==0.39.0
|
12 |
fairseq==0.12.2
|
13 |
faiss-cpu==1.7.3
|
14 |
+
gradio==3.43.2
|
15 |
Cython
|
16 |
pydub>=0.25.1
|
17 |
soundfile>=0.12.1
|
|
|
50 |
ffmpy==0.3.1
|
51 |
python-dotenv>=1.0.0
|
52 |
av
|
53 |
+
pydantic==1.10.12
|
tools/rvc_for_realtime.py
CHANGED
@@ -357,13 +357,19 @@ class RVC:
|
|
357 |
with torch.no_grad():
|
358 |
if self.if_f0 == 1:
|
359 |
# print(12222222222,feats.device,p_len.device,cache_pitch.device,cache_pitchf.device,sid.device,rate2)
|
360 |
-
infered_audio =
|
361 |
-
|
362 |
-
|
|
|
|
|
|
|
|
|
363 |
else:
|
364 |
-
infered_audio =
|
365 |
-
0, 0
|
366 |
-
|
|
|
|
|
367 |
t5 = ttime()
|
368 |
logger.info(
|
369 |
"Spent time: fea = %.2fs, index = %.2fs, f0 = %.2fs, model = %.2fs",
|
|
|
357 |
with torch.no_grad():
|
358 |
if self.if_f0 == 1:
|
359 |
# print(12222222222,feats.device,p_len.device,cache_pitch.device,cache_pitchf.device,sid.device,rate2)
|
360 |
+
infered_audio = (
|
361 |
+
self.net_g.infer(
|
362 |
+
feats, p_len, cache_pitch, cache_pitchf, sid, rate
|
363 |
+
)[0][0, 0]
|
364 |
+
.data
|
365 |
+
.float()
|
366 |
+
)
|
367 |
else:
|
368 |
+
infered_audio = (
|
369 |
+
self.net_g.infer(feats, p_len, sid, rate)[0][0, 0]
|
370 |
+
.data
|
371 |
+
.float()
|
372 |
+
)
|
373 |
t5 = ttime()
|
374 |
logger.info(
|
375 |
"Spent time: fea = %.2fs, index = %.2fs, f0 = %.2fs, model = %.2fs",
|
tools/torchgate/utils.py
CHANGED
@@ -3,9 +3,7 @@ from torch.types import Number
|
|
3 |
|
4 |
|
5 |
@torch.no_grad()
|
6 |
-
def amp_to_db(
|
7 |
-
x: torch.Tensor, eps=torch.finfo(torch.float64).eps, top_db=40
|
8 |
-
) -> torch.Tensor:
|
9 |
"""
|
10 |
Convert the input tensor from amplitude to decibel scale.
|
11 |
|
@@ -42,9 +40,7 @@ def temperature_sigmoid(x: torch.Tensor, x0: float, temp_coeff: float) -> torch.
|
|
42 |
|
43 |
|
44 |
@torch.no_grad()
|
45 |
-
def linspace(
|
46 |
-
start: Number, stop: Number, num: int = 50, endpoint: bool = True, **kwargs
|
47 |
-
) -> torch.Tensor:
|
48 |
"""
|
49 |
Generate a linearly spaced 1-D tensor.
|
50 |
|
|
|
3 |
|
4 |
|
5 |
@torch.no_grad()
|
6 |
+
def amp_to_db(x: torch.Tensor, eps=torch.finfo(torch.float64).eps, top_db=40) -> torch.Tensor:
|
|
|
|
|
7 |
"""
|
8 |
Convert the input tensor from amplitude to decibel scale.
|
9 |
|
|
|
40 |
|
41 |
|
42 |
@torch.no_grad()
|
43 |
+
def linspace(start: Number, stop: Number, num: int = 50, endpoint: bool = True, **kwargs) -> torch.Tensor:
|
|
|
|
|
44 |
"""
|
45 |
Generate a linearly spaced 1-D tensor.
|
46 |
|