asr / examples /wenet /toolbox_infer.py
HoneyTian's picture
update
3e60665
raw
history blame
2.24 kB
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
import os
from pathlib import Path
import sys
import tempfile
pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))
import librosa
import numpy as np
import sherpa
from scipy.io import wavfile
import torch
import torchaudio
from project_settings import project_path, temp_directory
from toolbox.k2_sherpa.utils import audio_convert
from toolbox.k2_sherpa import decode, nn_models
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_dir",
default=(project_path / "pretrained_models/huggingface/csukuangfj/wenet-chinese-model").as_posix(),
type=str
)
parser.add_argument(
"--in_filename",
default=(project_path / "data/test_wavs/paraformer-zh/si_chuan_hua.wav").as_posix(),
type=str
)
parser.add_argument("--sample_rate", default=16000, type=int)
args = parser.parse_args()
return args
def main():
args = get_args()
# audio convert
in_filename = Path(args.in_filename)
out_filename = Path(tempfile.gettempdir()) / "asr" / in_filename.name
out_filename.parent.mkdir(parents=True, exist_ok=True)
audio_convert(in_filename=in_filename.as_posix(),
out_filename=out_filename.as_posix(),
)
# load recognizer
m_dict = nn_models.model_map["Chinese"][0]
local_model_dir = Path(args.model_dir)
nn_model_file = local_model_dir / m_dict["nn_model_file"]
tokens_file = local_model_dir / m_dict["tokens_file"]
recognizer = nn_models.load_recognizer(
repo_id=m_dict["repo_id"],
nn_model_file=nn_model_file.as_posix(),
tokens_file=tokens_file.as_posix(),
sub_folder=m_dict["sub_folder"],
local_model_dir=local_model_dir,
recognizer_type=m_dict["recognizer_type"],
decoding_method="greedy_search",
num_active_paths=2,
)
text = decode.decode_by_recognizer(recognizer=recognizer,
filename=out_filename.as_posix(),
)
print("text: {}".format(text))
return
if __name__ == "__main__":
main()