update
Browse files- examples/silerovad/vad.py +57 -6
- main.py +77 -44
- ring_vad_examples.json +18 -0
- toolbox/vad/__init__.py +6 -0
- toolbox/vad/vad.py +299 -0
- toolbox/webrtcvad/vad.py +1 -1
- webrtcvad_examples.json +0 -8
examples/silerovad/vad.py
CHANGED
@@ -6,6 +6,8 @@ https://github.com/snakers4/silero-vad
|
|
6 |
"""
|
7 |
import argparse
|
8 |
|
|
|
|
|
9 |
from scipy.io import wavfile
|
10 |
import torch
|
11 |
|
@@ -35,6 +37,33 @@ def get_args():
|
|
35 |
return args
|
36 |
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
def main():
|
39 |
args = get_args()
|
40 |
|
@@ -45,7 +74,6 @@ def main():
|
|
45 |
sample_rate, signal = wavfile.read(args.wav_file)
|
46 |
signal = signal / 32768
|
47 |
signal = torch.tensor(signal, dtype=torch.float32)
|
48 |
-
print(signal)
|
49 |
|
50 |
min_speech_samples = sample_rate * args.min_speech_duration_ms / 1000
|
51 |
speech_pad_samples = sample_rate * args.speech_pad_ms / 1000
|
@@ -53,9 +81,11 @@ def main():
|
|
53 |
min_silence_samples = sample_rate * args.min_silence_duration_ms / 1000
|
54 |
min_silence_samples_at_max_speech = sample_rate * 98 / 1000
|
55 |
|
|
|
|
|
56 |
# probs
|
57 |
speech_probs = []
|
58 |
-
for start in range(0,
|
59 |
chunk = signal[start: start + args.window_size_samples]
|
60 |
if len(chunk) < args.window_size_samples:
|
61 |
chunk = torch.nn.functional.pad(chunk, (0, int(args.window_size_samples - len(chunk))))
|
@@ -63,8 +93,6 @@ def main():
|
|
63 |
speech_prob = model(chunk, sample_rate).item()
|
64 |
speech_probs.append(speech_prob)
|
65 |
|
66 |
-
print(speech_probs)
|
67 |
-
|
68 |
# segments
|
69 |
triggered = False
|
70 |
speeches = list()
|
@@ -107,6 +135,7 @@ def main():
|
|
107 |
temp_end = args.window_size_samples * i
|
108 |
if ((args.window_size_samples * i) - temp_end) > min_silence_samples_at_max_speech:
|
109 |
prev_end = temp_end
|
|
|
110 |
if (args.window_size_samples * i) - temp_end < min_silence_samples:
|
111 |
continue
|
112 |
else:
|
@@ -118,10 +147,32 @@ def main():
|
|
118 |
triggered = False
|
119 |
continue
|
120 |
|
121 |
-
if current_speech and (
|
122 |
-
current_speech["end"] =
|
123 |
speeches.append(current_speech)
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
return
|
126 |
|
127 |
|
|
|
6 |
"""
|
7 |
import argparse
|
8 |
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import numpy as np
|
11 |
from scipy.io import wavfile
|
12 |
import torch
|
13 |
|
|
|
37 |
return args
|
38 |
|
39 |
|
40 |
+
def make_visualization(probs, step):
|
41 |
+
import pandas as pd
|
42 |
+
pd.DataFrame({'probs': probs},
|
43 |
+
index=[x * step for x in range(len(probs))]).plot(figsize=(16, 8),
|
44 |
+
kind='area', ylim=[0, 1.05], xlim=[0, len(probs) * step],
|
45 |
+
xlabel='seconds',
|
46 |
+
ylabel='speech probability',
|
47 |
+
colormap='tab20')
|
48 |
+
|
49 |
+
|
50 |
+
def plot(signal, sample_rate, speeches):
|
51 |
+
time = np.arange(0, len(signal)) / sample_rate
|
52 |
+
|
53 |
+
plt.figure(figsize=(12, 5))
|
54 |
+
|
55 |
+
plt.plot(time, signal / 32768, color="b")
|
56 |
+
|
57 |
+
for speech in speeches:
|
58 |
+
start = speech["start"]
|
59 |
+
end = speech["end"]
|
60 |
+
plt.axvline(x=start, ymin=0.25, ymax=0.75, color="g", linestyle="--")
|
61 |
+
plt.axvline(x=end, ymin=0.25, ymax=0.75, color="r", linestyle="--")
|
62 |
+
|
63 |
+
plt.show()
|
64 |
+
return
|
65 |
+
|
66 |
+
|
67 |
def main():
|
68 |
args = get_args()
|
69 |
|
|
|
74 |
sample_rate, signal = wavfile.read(args.wav_file)
|
75 |
signal = signal / 32768
|
76 |
signal = torch.tensor(signal, dtype=torch.float32)
|
|
|
77 |
|
78 |
min_speech_samples = sample_rate * args.min_speech_duration_ms / 1000
|
79 |
speech_pad_samples = sample_rate * args.speech_pad_ms / 1000
|
|
|
81 |
min_silence_samples = sample_rate * args.min_silence_duration_ms / 1000
|
82 |
min_silence_samples_at_max_speech = sample_rate * 98 / 1000
|
83 |
|
84 |
+
audio_length_samples = len(signal)
|
85 |
+
|
86 |
# probs
|
87 |
speech_probs = []
|
88 |
+
for start in range(0, audio_length_samples, args.window_size_samples):
|
89 |
chunk = signal[start: start + args.window_size_samples]
|
90 |
if len(chunk) < args.window_size_samples:
|
91 |
chunk = torch.nn.functional.pad(chunk, (0, int(args.window_size_samples - len(chunk))))
|
|
|
93 |
speech_prob = model(chunk, sample_rate).item()
|
94 |
speech_probs.append(speech_prob)
|
95 |
|
|
|
|
|
96 |
# segments
|
97 |
triggered = False
|
98 |
speeches = list()
|
|
|
135 |
temp_end = args.window_size_samples * i
|
136 |
if ((args.window_size_samples * i) - temp_end) > min_silence_samples_at_max_speech:
|
137 |
prev_end = temp_end
|
138 |
+
|
139 |
if (args.window_size_samples * i) - temp_end < min_silence_samples:
|
140 |
continue
|
141 |
else:
|
|
|
147 |
triggered = False
|
148 |
continue
|
149 |
|
150 |
+
if current_speech and (audio_length_samples - current_speech["start"]) > min_speech_samples:
|
151 |
+
current_speech["end"] = audio_length_samples
|
152 |
speeches.append(current_speech)
|
153 |
|
154 |
+
for i, speech in enumerate(speeches):
|
155 |
+
if i == 0:
|
156 |
+
speech["start"] = int(max(0, speech["start"] - speech_pad_samples))
|
157 |
+
if i != len(speeches) - 1:
|
158 |
+
silence_duration = speeches[i+1]["start"] - speech["end"]
|
159 |
+
if silence_duration < 2 * speech_pad_samples:
|
160 |
+
speech["end"] += int(silence_duration // 2)
|
161 |
+
speeches[i+1]["start"] = int(max(0, speeches[i+1]["start"] - silence_duration // 2))
|
162 |
+
else:
|
163 |
+
speech["end"] = int(min(audio_length_samples, speech["end"] + speech_pad_samples))
|
164 |
+
speeches[i+1]["start"] = int(max(0, speeches[i+1]["start"] - speech_pad_samples))
|
165 |
+
else:
|
166 |
+
speech["end"] = int(min(audio_length_samples, speech["end"] + speech_pad_samples))
|
167 |
+
|
168 |
+
# in seconds
|
169 |
+
for speech_dict in speeches:
|
170 |
+
speech_dict["start"] = round(speech_dict["start"] / sample_rate, 1)
|
171 |
+
speech_dict["end"] = round(speech_dict["end"] / sample_rate, 1)
|
172 |
+
|
173 |
+
print(speeches)
|
174 |
+
plot(signal, sample_rate, speeches)
|
175 |
+
|
176 |
return
|
177 |
|
178 |
|
main.py
CHANGED
@@ -15,44 +15,65 @@ from PIL import Image
|
|
15 |
|
16 |
from project_settings import project_path, temp_directory
|
17 |
from toolbox.webrtcvad.vad import WebRTCVad
|
|
|
18 |
|
19 |
|
20 |
def get_args():
|
21 |
parser = argparse.ArgumentParser()
|
22 |
parser.add_argument(
|
23 |
-
"--
|
24 |
-
default=(project_path / "
|
25 |
type=str
|
26 |
)
|
27 |
args = parser.parse_args()
|
28 |
return args
|
29 |
|
30 |
|
31 |
-
|
32 |
|
33 |
|
34 |
-
def
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
41 |
|
|
|
|
|
42 |
sample_rate, signal = audio
|
43 |
|
44 |
-
webrtcvad
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
time = np.arange(0, len(signal)) / sample_rate
|
58 |
plt.figure(figsize=(12, 5))
|
@@ -77,8 +98,8 @@ def main():
|
|
77 |
"""
|
78 |
|
79 |
# examples
|
80 |
-
with open(args.
|
81 |
-
|
82 |
|
83 |
# ui
|
84 |
with gr.Blocks() as blocks:
|
@@ -87,50 +108,62 @@ def main():
|
|
87 |
with gr.Row():
|
88 |
with gr.Column(scale=5):
|
89 |
with gr.Tabs():
|
90 |
-
with gr.TabItem("
|
91 |
gr.Markdown(value="")
|
92 |
|
93 |
with gr.Row():
|
94 |
with gr.Column(scale=1):
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
with gr.Row():
|
98 |
-
|
99 |
-
|
100 |
|
101 |
with gr.Row():
|
102 |
-
|
103 |
-
|
104 |
|
105 |
-
|
106 |
|
107 |
with gr.Column(scale=1):
|
108 |
-
|
109 |
-
|
110 |
|
111 |
gr.Examples(
|
112 |
-
examples=
|
113 |
inputs=[
|
114 |
-
|
115 |
-
|
|
|
|
|
116 |
],
|
117 |
-
outputs=[
|
118 |
-
fn=
|
119 |
)
|
120 |
|
121 |
# click event
|
122 |
-
|
123 |
-
|
124 |
inputs=[
|
125 |
-
|
126 |
-
|
|
|
|
|
127 |
],
|
128 |
-
outputs=[
|
129 |
)
|
130 |
|
131 |
blocks.queue().launch(
|
132 |
share=False if platform.system() == "Windows" else False,
|
133 |
-
server_name="0.0.0.0",
|
|
|
134 |
)
|
135 |
return
|
136 |
|
|
|
15 |
|
16 |
from project_settings import project_path, temp_directory
|
17 |
from toolbox.webrtcvad.vad import WebRTCVad
|
18 |
+
from toolbox.vad.vad import Vad, WebRTCVoiceClassifier, SileroVoiceClassifier
|
19 |
|
20 |
|
21 |
def get_args():
|
22 |
parser = argparse.ArgumentParser()
|
23 |
parser.add_argument(
|
24 |
+
"--ring_vad_examples_file",
|
25 |
+
default=(project_path / "ring_vad_examples.json").as_posix(),
|
26 |
type=str
|
27 |
)
|
28 |
args = parser.parse_args()
|
29 |
return args
|
30 |
|
31 |
|
32 |
+
vad: Vad = None
|
33 |
|
34 |
|
35 |
+
def click_ring_vad_button(audio: Tuple[int, np.ndarray],
|
36 |
+
model_name: str,
|
37 |
+
agg: int = 3,
|
38 |
+
frame_duration_ms: int = 30,
|
39 |
+
padding_duration_ms: int = 300,
|
40 |
+
silence_duration_threshold: float = 0.3,
|
41 |
+
start_ring_rate: float = 0.9,
|
42 |
+
end_ring_rate: float = 0.1,
|
43 |
+
):
|
44 |
+
global vad
|
45 |
|
46 |
+
if audio is None:
|
47 |
+
return None, "please upload audio."
|
48 |
sample_rate, signal = audio
|
49 |
|
50 |
+
if model_name == "webrtcvad" and frame_duration_ms not in (10, 20, 30):
|
51 |
+
return None, "only 10, 20, 30 available for `frame_duration_ms`."
|
52 |
+
|
53 |
+
if model_name == "webrtcvad":
|
54 |
+
model = WebRTCVoiceClassifier(agg=agg)
|
55 |
+
elif model_name == "silerovad":
|
56 |
+
model = SileroVoiceClassifier(model_name=(project_path / "pretrained_models/silero_vad/silero_vad.jit").as_posix())
|
57 |
+
else:
|
58 |
+
return None, "`model_name` not valid."
|
59 |
+
|
60 |
+
vad = Vad(model=model,
|
61 |
+
start_ring_rate=start_ring_rate,
|
62 |
+
end_ring_rate=end_ring_rate,
|
63 |
+
frame_duration_ms=frame_duration_ms,
|
64 |
+
padding_duration_ms=padding_duration_ms,
|
65 |
+
silence_duration_threshold=silence_duration_threshold,
|
66 |
+
sample_rate=sample_rate,
|
67 |
+
)
|
68 |
+
|
69 |
+
try:
|
70 |
+
vad_segments = list()
|
71 |
+
segments = vad.vad(signal)
|
72 |
+
vad_segments += segments
|
73 |
+
segments = vad.last_vad_segments()
|
74 |
+
vad_segments += segments
|
75 |
+
except Exception as e:
|
76 |
+
return None, str(e)
|
77 |
|
78 |
time = np.arange(0, len(signal)) / sample_rate
|
79 |
plt.figure(figsize=(12, 5))
|
|
|
98 |
"""
|
99 |
|
100 |
# examples
|
101 |
+
with open(args.ring_vad_examples_file, "r", encoding="utf-8") as f:
|
102 |
+
ring_vad_examples = json.load(f)
|
103 |
|
104 |
# ui
|
105 |
with gr.Blocks() as blocks:
|
|
|
108 |
with gr.Row():
|
109 |
with gr.Column(scale=5):
|
110 |
with gr.Tabs():
|
111 |
+
with gr.TabItem("ring_vad"):
|
112 |
gr.Markdown(value="")
|
113 |
|
114 |
with gr.Row():
|
115 |
with gr.Column(scale=1):
|
116 |
+
ring_wav = gr.Audio(label="wav")
|
117 |
+
|
118 |
+
with gr.Row():
|
119 |
+
ring_model_name = gr.Dropdown(choices=["webrtcvad", "silerovad"], value="webrtcvad", label="model_name")
|
120 |
+
|
121 |
+
with gr.Row():
|
122 |
+
ring_agg = gr.Dropdown(choices=[1, 2, 3], value=3, label="agg")
|
123 |
+
ring_frame_duration_ms = gr.Slider(minimum=0, maximum=100, value=30, label="frame_duration_ms")
|
124 |
|
125 |
with gr.Row():
|
126 |
+
ring_padding_duration_ms = gr.Slider(minimum=0, maximum=1000, value=300, label="padding_duration_ms")
|
127 |
+
ring_silence_duration_threshold = gr.Slider(minimum=0, maximum=1.0, value=0.3, step=0.1, label="silence_duration_threshold")
|
128 |
|
129 |
with gr.Row():
|
130 |
+
ring_start_ring_rate = gr.Slider(minimum=0, maximum=1, value=0.9, step=0.1, label="start_ring_rate")
|
131 |
+
ring_end_ring_rate = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.1, label="end_ring_rate")
|
132 |
|
133 |
+
ring_button = gr.Button("retrieval", variant="primary")
|
134 |
|
135 |
with gr.Column(scale=1):
|
136 |
+
ring_image = gr.Image(label="image", height=300, width=720, show_label=False)
|
137 |
+
ring_end_points = gr.TextArea(label="end_points", max_lines=35)
|
138 |
|
139 |
gr.Examples(
|
140 |
+
examples=ring_vad_examples,
|
141 |
inputs=[
|
142 |
+
ring_wav,
|
143 |
+
ring_model_name, ring_agg, ring_frame_duration_ms,
|
144 |
+
ring_padding_duration_ms, ring_silence_duration_threshold,
|
145 |
+
ring_start_ring_rate, ring_end_ring_rate
|
146 |
],
|
147 |
+
outputs=[ring_image, ring_end_points],
|
148 |
+
fn=click_ring_vad_button
|
149 |
)
|
150 |
|
151 |
# click event
|
152 |
+
ring_button.click(
|
153 |
+
click_ring_vad_button,
|
154 |
inputs=[
|
155 |
+
ring_wav,
|
156 |
+
ring_model_name, ring_agg, ring_frame_duration_ms,
|
157 |
+
ring_padding_duration_ms, ring_silence_duration_threshold,
|
158 |
+
ring_start_ring_rate, ring_end_ring_rate
|
159 |
],
|
160 |
+
outputs=[ring_image, ring_end_points],
|
161 |
)
|
162 |
|
163 |
blocks.queue().launch(
|
164 |
share=False if platform.system() == "Windows" else False,
|
165 |
+
server_name="127.0.0.1" if platform.system() == "Windows" else "0.0.0.0",
|
166 |
+
server_port=7860
|
167 |
)
|
168 |
return
|
169 |
|
ring_vad_examples.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
[
|
3 |
+
"data/early_media/3300999628164249998.wav",
|
4 |
+
"webrtcvad", 3, 30, 300, 0.3, 0.9, 0.1
|
5 |
+
],
|
6 |
+
[
|
7 |
+
"data/early_media/3300999628164852605.wav",
|
8 |
+
"webrtcvad", 3, 30, 300, 0.3, 0.9, 0.1
|
9 |
+
],
|
10 |
+
[
|
11 |
+
"data/early_media/3300999628164249998.wav",
|
12 |
+
"silerovad", 3, 35, 350, 0.35, 0.5, 0.5
|
13 |
+
],
|
14 |
+
[
|
15 |
+
"data/early_media/3300999628164852605.wav",
|
16 |
+
"silerovad", 3, 35, 350, 0.35, 0.5, 0.5
|
17 |
+
]
|
18 |
+
]
|
toolbox/vad/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
if __name__ == '__main__':
|
6 |
+
pass
|
toolbox/vad/vad.py
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import argparse
|
4 |
+
import collections
|
5 |
+
from typing import List
|
6 |
+
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
from scipy.io import wavfile
|
10 |
+
import torch
|
11 |
+
import webrtcvad
|
12 |
+
|
13 |
+
from project_settings import project_path
|
14 |
+
|
15 |
+
|
16 |
+
class FrameVoiceClassifier(object):
|
17 |
+
def predict(self, chunk: np.ndarray) -> float:
|
18 |
+
raise NotImplementedError
|
19 |
+
|
20 |
+
|
21 |
+
class WebRTCVoiceClassifier(FrameVoiceClassifier):
|
22 |
+
def __init__(self,
|
23 |
+
agg: int = 3,
|
24 |
+
sample_rate: int = 8000
|
25 |
+
):
|
26 |
+
self.agg = agg
|
27 |
+
self.sample_rate = sample_rate
|
28 |
+
|
29 |
+
self.model = webrtcvad.Vad(mode=agg)
|
30 |
+
|
31 |
+
def predict(self, chunk: np.ndarray) -> float:
|
32 |
+
if chunk.dtype != np.int16:
|
33 |
+
raise AssertionError("signal dtype should be np.int16, instead of {}".format(chunk.dtype))
|
34 |
+
|
35 |
+
audio_bytes = bytes(chunk)
|
36 |
+
is_speech = self.model.is_speech(audio_bytes, self.sample_rate)
|
37 |
+
return 1.0 if is_speech else 0.0
|
38 |
+
|
39 |
+
|
40 |
+
class SileroVoiceClassifier(FrameVoiceClassifier):
|
41 |
+
def __init__(self,
|
42 |
+
model_name: str,
|
43 |
+
sample_rate: int = 8000):
|
44 |
+
self.model_name = model_name
|
45 |
+
self.sample_rate = sample_rate
|
46 |
+
|
47 |
+
with open(self.model_name, "rb") as f:
|
48 |
+
model = torch.jit.load(f, map_location="cpu")
|
49 |
+
self.model = model
|
50 |
+
self.model.reset_states()
|
51 |
+
|
52 |
+
def predict(self, chunk: np.ndarray) -> float:
|
53 |
+
if self.sample_rate / len(chunk) > 31.25:
|
54 |
+
raise AssertionError("chunk samples number {} is less than {}".format(len(chunk), self.sample_rate / 31.25))
|
55 |
+
if chunk.dtype != np.int16:
|
56 |
+
raise AssertionError("signal dtype should be np.int16, instead of {}".format(chunk.dtype))
|
57 |
+
|
58 |
+
chunk = chunk / 32768
|
59 |
+
chunk = torch.tensor(chunk, dtype=torch.float32)
|
60 |
+
speech_prob = self.model(chunk, self.sample_rate).item()
|
61 |
+
return float(speech_prob)
|
62 |
+
|
63 |
+
|
64 |
+
class Frame(object):
|
65 |
+
def __init__(self, signal: np.ndarray, timestamp, duration):
|
66 |
+
self.signal = signal
|
67 |
+
self.timestamp = timestamp
|
68 |
+
self.duration = duration
|
69 |
+
|
70 |
+
|
71 |
+
class Vad(object):
|
72 |
+
def __init__(self,
|
73 |
+
model: FrameVoiceClassifier,
|
74 |
+
start_ring_rate: float = 0.5,
|
75 |
+
end_ring_rate: float = 0.5,
|
76 |
+
frame_duration_ms: int = 30,
|
77 |
+
padding_duration_ms: int = 300,
|
78 |
+
silence_duration_threshold: float = 0.3,
|
79 |
+
sample_rate: int = 8000
|
80 |
+
):
|
81 |
+
self.model = model
|
82 |
+
self.start_ring_rate = start_ring_rate
|
83 |
+
self.end_ring_rate = end_ring_rate
|
84 |
+
self.frame_duration_ms = frame_duration_ms
|
85 |
+
self.padding_duration_ms = padding_duration_ms
|
86 |
+
self.silence_duration_threshold = silence_duration_threshold
|
87 |
+
self.sample_rate = sample_rate
|
88 |
+
|
89 |
+
# frames
|
90 |
+
self.frame_length = int(sample_rate * (frame_duration_ms / 1000.0))
|
91 |
+
self.frame_timestamp = 0.0
|
92 |
+
self.signal_cache = None
|
93 |
+
|
94 |
+
# segments
|
95 |
+
self.num_padding_frames = int(padding_duration_ms / frame_duration_ms)
|
96 |
+
self.ring_buffer = collections.deque(maxlen=self.num_padding_frames)
|
97 |
+
self.triggered = False
|
98 |
+
self.voiced_frames: List[Frame] = list()
|
99 |
+
self.segments = list()
|
100 |
+
|
101 |
+
# vad segments
|
102 |
+
self.is_first_segment = True
|
103 |
+
self.timestamp_start = 0.0
|
104 |
+
self.timestamp_end = 0.0
|
105 |
+
|
106 |
+
def signal_to_frames(self, signal: np.ndarray):
|
107 |
+
frames = list()
|
108 |
+
|
109 |
+
l = len(signal)
|
110 |
+
|
111 |
+
duration = float(self.frame_length) / self.sample_rate
|
112 |
+
|
113 |
+
for offset in range(0, l, self.frame_length):
|
114 |
+
sub_signal = signal[offset:offset+self.frame_length]
|
115 |
+
|
116 |
+
frame = Frame(sub_signal, self.frame_timestamp, duration)
|
117 |
+
self.frame_timestamp += duration
|
118 |
+
|
119 |
+
frames.append(frame)
|
120 |
+
return frames
|
121 |
+
|
122 |
+
def segments_generator(self, signal: np.ndarray):
|
123 |
+
# signal rounding
|
124 |
+
if self.signal_cache is not None:
|
125 |
+
signal = np.concatenate([self.signal_cache, signal])
|
126 |
+
|
127 |
+
rest = len(signal) % self.frame_length
|
128 |
+
|
129 |
+
if rest == 0:
|
130 |
+
self.signal_cache = None
|
131 |
+
signal_ = signal
|
132 |
+
else:
|
133 |
+
self.signal_cache = signal[-rest:]
|
134 |
+
signal_ = signal[:-rest]
|
135 |
+
|
136 |
+
# frames
|
137 |
+
frames = self.signal_to_frames(signal_)
|
138 |
+
|
139 |
+
for frame in frames:
|
140 |
+
speech_prob = self.model.predict(frame.signal)
|
141 |
+
|
142 |
+
if not self.triggered:
|
143 |
+
self.ring_buffer.append((frame, speech_prob))
|
144 |
+
num_voiced = sum([p for _, p in self.ring_buffer])
|
145 |
+
|
146 |
+
if num_voiced > self.start_ring_rate * self.ring_buffer.maxlen:
|
147 |
+
self.triggered = True
|
148 |
+
|
149 |
+
for f, _ in self.ring_buffer:
|
150 |
+
self.voiced_frames.append(f)
|
151 |
+
self.ring_buffer.clear()
|
152 |
+
else:
|
153 |
+
self.voiced_frames.append(frame)
|
154 |
+
self.ring_buffer.append((frame, speech_prob))
|
155 |
+
num_voiced = sum([p for _, p in self.ring_buffer])
|
156 |
+
|
157 |
+
if num_voiced < self.end_ring_rate * self.ring_buffer.maxlen:
|
158 |
+
self.triggered = False
|
159 |
+
segment = [
|
160 |
+
np.concatenate([f.signal for f in self.voiced_frames]),
|
161 |
+
self.voiced_frames[0].timestamp,
|
162 |
+
self.voiced_frames[-1].timestamp,
|
163 |
+
]
|
164 |
+
yield segment
|
165 |
+
self.ring_buffer.clear()
|
166 |
+
self.voiced_frames = []
|
167 |
+
|
168 |
+
def vad_segments_generator(self, segments_generator):
|
169 |
+
segments = list(segments_generator)
|
170 |
+
|
171 |
+
for i, segment in enumerate(segments):
|
172 |
+
start = round(segment[1], 4)
|
173 |
+
end = round(segment[2], 4)
|
174 |
+
|
175 |
+
if self.is_first_segment:
|
176 |
+
self.timestamp_start = start
|
177 |
+
self.timestamp_end = end
|
178 |
+
self.is_first_segment = False
|
179 |
+
continue
|
180 |
+
|
181 |
+
if self.timestamp_start:
|
182 |
+
sil_duration = start - self.timestamp_end
|
183 |
+
if sil_duration > self.silence_duration_threshold:
|
184 |
+
vad_segment = [self.timestamp_start, self.timestamp_end]
|
185 |
+
yield vad_segment
|
186 |
+
|
187 |
+
self.timestamp_start = start
|
188 |
+
self.timestamp_end = end
|
189 |
+
else:
|
190 |
+
self.timestamp_end = end
|
191 |
+
|
192 |
+
def vad(self, signal: np.ndarray) -> List[list]:
|
193 |
+
segments = self.segments_generator(signal)
|
194 |
+
vad_segments = self.vad_segments_generator(segments)
|
195 |
+
vad_segments = list(vad_segments)
|
196 |
+
return vad_segments
|
197 |
+
|
198 |
+
def last_vad_segments(self) -> List[list]:
|
199 |
+
# last segments
|
200 |
+
if len(self.voiced_frames) == 0:
|
201 |
+
segments = []
|
202 |
+
else:
|
203 |
+
segment = [
|
204 |
+
np.concatenate([f.signal for f in self.voiced_frames]),
|
205 |
+
self.voiced_frames[0].timestamp,
|
206 |
+
self.voiced_frames[-1].timestamp
|
207 |
+
]
|
208 |
+
segments = [segment]
|
209 |
+
|
210 |
+
# last vad segments
|
211 |
+
vad_segments = self.vad_segments_generator(segments)
|
212 |
+
vad_segments = list(vad_segments)
|
213 |
+
|
214 |
+
vad_segments = vad_segments + [[self.timestamp_start, self.timestamp_end]]
|
215 |
+
return vad_segments
|
216 |
+
|
217 |
+
|
218 |
+
def make_visualization(signal: np.ndarray, sample_rate: int, vad_segments: list):
|
219 |
+
time = np.arange(0, len(signal)) / sample_rate
|
220 |
+
plt.figure(figsize=(12, 5))
|
221 |
+
plt.plot(time, signal / 32768, color='b')
|
222 |
+
for start, end in vad_segments:
|
223 |
+
plt.axvline(x=start, ymin=0.25, ymax=0.75, color='g', linestyle='--', label='开始端点') # 标记开始端点
|
224 |
+
plt.axvline(x=end, ymin=0.25, ymax=0.75, color='r', linestyle='--', label='结束端点') # 标记结束端点
|
225 |
+
|
226 |
+
plt.show()
|
227 |
+
return
|
228 |
+
|
229 |
+
|
230 |
+
def get_args():
|
231 |
+
parser = argparse.ArgumentParser()
|
232 |
+
parser.add_argument(
|
233 |
+
"--wav_file",
|
234 |
+
default=(project_path / "data/early_media/3300999628164249998.wav").as_posix(),
|
235 |
+
type=str,
|
236 |
+
)
|
237 |
+
parser.add_argument(
|
238 |
+
"--model_name",
|
239 |
+
default=(project_path / "pretrained_models/silero_vad/silero_vad.jit").as_posix(),
|
240 |
+
type=str,
|
241 |
+
)
|
242 |
+
parser.add_argument(
|
243 |
+
"--frame_duration_ms",
|
244 |
+
default=30,
|
245 |
+
type=int,
|
246 |
+
)
|
247 |
+
parser.add_argument(
|
248 |
+
"--silence_duration_threshold",
|
249 |
+
default=0.3,
|
250 |
+
type=float,
|
251 |
+
help="minimum silence duration, in seconds."
|
252 |
+
)
|
253 |
+
args = parser.parse_args()
|
254 |
+
return args
|
255 |
+
|
256 |
+
|
257 |
+
SAMPLE_RATE = 8000
|
258 |
+
|
259 |
+
|
260 |
+
def main():
|
261 |
+
args = get_args()
|
262 |
+
|
263 |
+
sample_rate, signal = wavfile.read(args.wav_file)
|
264 |
+
if SAMPLE_RATE != sample_rate:
|
265 |
+
raise AssertionError
|
266 |
+
|
267 |
+
# model = SileroVoiceClassifier(model_name=args.model_name, sample_rate=SAMPLE_RATE)
|
268 |
+
model = WebRTCVoiceClassifier(agg=1, sample_rate=SAMPLE_RATE)
|
269 |
+
|
270 |
+
vad = Vad(model=model,
|
271 |
+
start_ring_rate=0.9,
|
272 |
+
end_ring_rate=0.1,
|
273 |
+
frame_duration_ms=30,
|
274 |
+
padding_duration_ms=300,
|
275 |
+
silence_duration_threshold=0.30,
|
276 |
+
sample_rate=SAMPLE_RATE,
|
277 |
+
)
|
278 |
+
print(vad)
|
279 |
+
|
280 |
+
vad_segments = list()
|
281 |
+
|
282 |
+
segments = vad.vad(signal)
|
283 |
+
vad_segments += segments
|
284 |
+
for segment in segments:
|
285 |
+
print(segment)
|
286 |
+
|
287 |
+
# last vad segment
|
288 |
+
segments = vad.last_vad_segments()
|
289 |
+
vad_segments += segments
|
290 |
+
for segment in segments:
|
291 |
+
print(segment)
|
292 |
+
|
293 |
+
# plot
|
294 |
+
make_visualization(signal, SAMPLE_RATE, vad_segments)
|
295 |
+
return
|
296 |
+
|
297 |
+
|
298 |
+
if __name__ == '__main__':
|
299 |
+
main()
|
toolbox/webrtcvad/vad.py
CHANGED
@@ -168,7 +168,7 @@ def get_args():
|
|
168 |
parser = argparse.ArgumentParser()
|
169 |
parser.add_argument(
|
170 |
"--wav_file",
|
171 |
-
default=(project_path / "data/3300999628164249998.wav").as_posix(),
|
172 |
type=str,
|
173 |
)
|
174 |
parser.add_argument(
|
|
|
168 |
parser = argparse.ArgumentParser()
|
169 |
parser.add_argument(
|
170 |
"--wav_file",
|
171 |
+
default=(project_path / "data/early_media/3300999628164249998.wav").as_posix(),
|
172 |
type=str,
|
173 |
)
|
174 |
parser.add_argument(
|
webrtcvad_examples.json
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
[
|
2 |
-
[
|
3 |
-
"data/early_media/3300999628164249998.wav"
|
4 |
-
],
|
5 |
-
[
|
6 |
-
"data/early_media/3300999628164852605.wav"
|
7 |
-
]
|
8 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|