Spaces:
Sleeping
Sleeping
File size: 13,138 Bytes
1258705 dc9e27a e777d52 1258705 e777d52 dc9e27a 19e1819 dc9e27a 1258705 dc9e27a 91da109 1258705 dc9e27a 1258705 dc9e27a 1258705 dc9e27a 1258705 dc9e27a 1258705 dc9e27a 1258705 dc9e27a 1258705 dc9e27a 1258705 dc9e27a 1258705 dc9e27a 1258705 dc9e27a 1258705 dc9e27a 1258705 dc9e27a 1258705 dc9e27a 1258705 dc9e27a 1258705 dc9e27a 1258705 dc9e27a 1258705 dc9e27a 1258705 dc9e27a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import json
import mimetypes
import os
import sys
import tempfile
import gradio as gr
import requests
# sys.path.insert(0, os.path.dirname(__file__))
import schemdraw
from frontend.gradio_agentchatbot.agentchatbot import AgentChatbot
from frontend.gradio_agentchatbot.utils import ChatFileMessage, ChatMessage, ThoughtMetadata
from lagent.schema import AgentStatusCode
from schemdraw import flow
import os
os.system("pip show starlette")
# os.system("pip install -r requirements.txt")
os.system("pip install tenacity")
os.system("python -m mindsearch.app --lang en --model_format internlm_silicon --search_engine DuckDuckGoSearch &")
print('MindSearch is running on http://')
PLANNER_HISTORY = []
SEARCHER_HISTORY = []
def create_search_graph(adjacency_list: dict):
import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"] = ["SimHei"]
with schemdraw.Drawing(fontsize=10, unit=1) as graph:
node_pos, nodes, edges = {}, {}, []
if "root" in adjacency_list:
queue, layer, response_level = ["root"], 0, 0
while queue:
layer_len = len(queue)
for i in range(layer_len):
node_name = queue.pop(0)
node_pos[node_name] = (layer * 5, -i * 3)
for item in adjacency_list[node_name]:
if item["name"] == "response":
response_level = max(response_level, (layer + 1) * 5)
else:
queue.append(item["name"])
edges.append((node_name, item["name"]))
layer += 1
for node_name, (x, y) in node_pos.items():
if node_name == "root":
node = flow.Terminal().label(node_name).at((x, y)).color("pink")
else:
node = flow.RoundBox(w=3.5, h=1.75).label(node_name).at((x, y)).color("teal")
nodes[node_name] = node
if response_level:
response_node = (
flow.Terminal().label("response").at((response_level, 0)).color("orange")
)
nodes["response"] = response_node
for start, end in edges:
flow.Arc3(arrow="->").linestyle("--" if end == "response" else "-").at(
nodes[start].E
).to(nodes[end].W).color("grey" if end == "response" else "lightblue")
return graph
def draw_search_graph(adjacency_list: dict, suffix=".png", dpi=360) -> str:
g = create_search_graph(adjacency_list)
path = tempfile.mktemp(suffix=suffix)
g.save(path, dpi=dpi)
return path
def rst_mem():
"""Reset the chatbot memory."""
if PLANNER_HISTORY:
PLANNER_HISTORY.clear()
return [], [], 0
def format_response(gr_history, message, response, idx=-1):
if idx < 0:
idx = len(gr_history) + idx
if message["stream_state"] == AgentStatusCode.STREAM_ING:
gr_history[idx].content = response
elif message["stream_state"] == AgentStatusCode.CODING:
if gr_history[idx].thought_metadata.tool_name is None:
gr_history[idx].content = gr_history[idx].content.split("<|action_start|>")[0]
gr_history.insert(
idx + 1,
ChatMessage(
role="assistant",
content=response,
thought_metadata=ThoughtMetadata(tool_name="π₯οΈ Code Interpreter"),
),
)
else:
gr_history[idx].content = response
elif message["stream_state"] == AgentStatusCode.PLUGIN_START:
if isinstance(response, dict):
response = json.dumps(response, ensure_ascii=False, indent=4)
if gr_history[idx].thought_metadata.tool_name is None:
gr_history[idx].content = gr_history[idx].content.split("<|action_start|>")[0]
gr_history.insert(
idx + 1,
ChatMessage(
role="assistant",
content="```json\n" + response,
thought_metadata=ThoughtMetadata(tool_name="π Web Browser"),
),
)
else:
gr_history[idx].content = "```json\n" + response
elif message["stream_state"] == AgentStatusCode.PLUGIN_END and isinstance(response, dict):
gr_history[idx].content = (
f"```json\n{json.dumps(response, ensure_ascii=False, indent=4)}\n```"
)
elif message["stream_state"] in [AgentStatusCode.CODE_RETURN, AgentStatusCode.PLUGIN_RETURN]:
try:
content = json.loads(message["content"])
except json.decoder.JSONDecodeError:
content = message["content"]
if gr_history[idx].thought_metadata.tool_name:
gr_history.insert(
idx + 1,
ChatMessage(
role="assistant",
content=(
content
if isinstance(content, str)
else f"\n```json\n{json.dumps(content, ensure_ascii=False, indent=4)}\n```\n"
),
thought_metadata=ThoughtMetadata(tool_name="Execution"),
),
)
gr_history.insert(idx + 2, ChatMessage(role="assistant", content=""))
def predict(history_planner, history_searcher, node_cnt):
def streaming(raw_response):
for chunk in raw_response.iter_lines(
chunk_size=8192, decode_unicode=False, delimiter=b"\n"
):
if chunk:
decoded = chunk.decode("utf-8")
if decoded == "\r":
continue
if decoded[:6] == "data: ":
decoded = decoded[6:]
elif decoded.startswith(": ping - "):
continue
response = json.loads(decoded)
yield (
response["current_node"],
(
response["response"]["formatted"]["node"][response["current_node"]]
if response["current_node"]
else response["response"]
),
response["response"]["formatted"]["adjacency_list"],
)
global PLANNER_HISTORY
PLANNER_HISTORY.extend(history_planner[-3:])
search_graph_msg = history_planner[-1]
url = "http://localhost:8002/solve"
data = {"inputs": PLANNER_HISTORY[-3].content}
raw_response = requests.post(url, json=data, timeout=60, stream=True)
node_id2msg_idx = {}
for resp in streaming(raw_response):
node_name, agent_message, adjacency_list = resp
dedup_nodes = set(adjacency_list) | {
val["name"] for vals in adjacency_list.values() for val in vals
}
if dedup_nodes and len(dedup_nodes) != node_cnt:
node_cnt = len(dedup_nodes)
graph_path = draw_search_graph(adjacency_list)
search_graph_msg.file.path = graph_path
search_graph_msg.file.mime_type = mimetypes.guess_type(graph_path)[0]
if node_name:
if node_name in ["root", "response"]:
continue
node_id = f'γ{node_name}γ{agent_message["content"]}'
agent_message = agent_message["response"]
response = (
agent_message["formatted"]["action"]
if agent_message["stream_state"]
in [AgentStatusCode.PLUGIN_START, AgentStatusCode.PLUGIN_END]
else agent_message["formatted"] and agent_message["formatted"].get("thought")
)
if node_id not in node_id2msg_idx:
node_id2msg_idx[node_id] = len(history_searcher) + 1
history_searcher.append(ChatMessage(role="user", content=node_id))
history_searcher.append(ChatMessage(role="assistant", content=""))
offset = len(history_searcher)
format_response(history_searcher, agent_message, response, node_id2msg_idx[node_id])
flag, incr = False, len(history_searcher) - offset
for key, value in node_id2msg_idx.items():
if flag or key == node_id:
node_id2msg_idx[key] = value + incr
if not flag:
flag = True
yield history_planner, history_searcher, node_cnt
else:
response = (
agent_message["formatted"]["action"]
if agent_message["stream_state"]
in [AgentStatusCode.CODING, AgentStatusCode.CODE_END]
else agent_message["formatted"] and agent_message["formatted"].get("thought")
)
format_response(history_planner, agent_message, response, -2)
if agent_message["stream_state"] == AgentStatusCode.END:
PLANNER_HISTORY = history_planner
yield history_planner, history_searcher, node_cnt
return history_planner, history_searcher, node_cnt
with gr.Blocks(css=os.path.join(os.path.dirname(__file__), "css", "gradio_front.css")) as demo:
with gr.Column(elem_classes="chat-box"):
gr.HTML("""<h1 align="center">MindSearch Gradio Demo</h1>""")
gr.HTML(
"""<p style="text-align: center; font-family: Arial, sans-serif;">
MindSearch is an open-source AI Search Engine Framework with Perplexity.ai Pro performance.
You can deploy your own Perplexity.ai-style search engine using either
closed-source LLMs (GPT, Claude)
or open-source LLMs (InternLM2.5-7b-chat).</p> """
)
gr.HTML(
"""
<div style="text-align: center; font-size: 16px;">
<a href="https://github.com/InternLM/MindSearch" style="margin-right: 15px;
text-decoration: none; color: #4A90E2;" target="_blank">π GitHub</a>
<a href="https://arxiv.org/abs/2407.20183" style="margin-right: 15px;
text-decoration: none; color: #4A90E2;" target="_blank">π Arxiv</a>
<a href="https://huggingface.co/papers/2407.20183" style="margin-right:
15px; text-decoration: none; color: #4A90E2;" target="_blank">π Hugging Face Papers</a>
<a href="https://huggingface.co/spaces/internlm/MindSearch"
style="text-decoration: none; color: #4A90E2;" target="_blank">π€ Hugging Face Demo</a>
</div>"""
)
gr.HTML(
"""
<h1 align='right'><img
src=
'https://raw.githubusercontent.com/InternLM/MindSearch/98fd84d566fe9e3adc5028727f72f2944098fd05/assets/logo.svg'
alt='MindSearch Logo1' class="logo" width="200"></h1> """
)
node_count = gr.State(0)
with gr.Row():
planner = AgentChatbot(
label="planner",
height=600,
show_label=True,
show_copy_button=True,
bubble_full_width=False,
render_markdown=True,
elem_classes="chatbot-container",
)
searcher = AgentChatbot(
label="searcher",
height=600,
show_label=True,
show_copy_button=True,
bubble_full_width=False,
render_markdown=True,
elem_classes="chatbot-container",
)
with gr.Row(elem_classes="chat-box"):
# Text input area
user_input = gr.Textbox(
show_label=False,
placeholder="Type your message...",
lines=1,
container=False,
elem_classes="editor",
scale=4,
)
# Buttons (now in the same Row)
submitBtn = gr.Button("submit", variant="primary", elem_classes="toolbarButton", scale=1)
clearBtn = gr.Button("clear", variant="secondary", elem_classes="toolbarButton", scale=1)
with gr.Row(elem_classes="examples-container"):
examples_component = gr.Examples(
[
["Find legal precedents in contract law."],
["What are the top 10 e-commerce websites?"],
["Generate a report on global climate change."],
],
inputs=user_input,
label="Try these examples:",
)
def user(query, history):
history.append(ChatMessage(role="user", content=query))
history.append(ChatMessage(role="assistant", content=""))
graph_path = draw_search_graph({"root": []})
history.append(
ChatFileMessage(
role="assistant",
file=gr.FileData(path=graph_path, mime_type=mimetypes.guess_type(graph_path)[0]),
)
)
return "", history
submitBtn.click(user, [user_input, planner], [user_input, planner], queue=False).then(
predict,
[planner, searcher, node_count],
[planner, searcher, node_count],
)
clearBtn.click(rst_mem, None, [planner, searcher, node_count], queue=False)
demo.queue()
demo.launch()
# demo.launch(server_name="0.0.0.0", inbrowser=True, share=False)
|