InternLM-Math's picture
Update app.py
a1b7944 verified
raw
history blame
5.5 kB
import os
os.system("pip uninstall -y gradio")
os.system("pip install gradio==3.43.0")
from lmdeploy.serve.gradio.turbomind_coupled import *
from lmdeploy.messages import TurbomindEngineConfig
from lmdeploy import ChatTemplateConfig
chat_template = ChatTemplateConfig(model_name='internlm2-chat-7b', system='', eosys='', meta_instruction='')
backend_config = TurbomindEngineConfig(model_name='internlm2-chat-7b', max_batch_size=1, cache_max_entry_count=0.05)#, model_format='awq')
model_path = 'internlm/internlm2-math-plus-7b'
InterFace.async_engine = AsyncEngine(
model_path=model_path,
backend='turbomind',
backend_config=backend_config,
chat_template_config=chat_template,
tp=1)
async def reset_local_func(instruction_txtbox: gr.Textbox,
state_chatbot: Sequence, session_id: int):
"""reset the session.
Args:
instruction_txtbox (str): user's prompt
state_chatbot (Sequence): the chatting history
session_id (int): the session id
"""
state_chatbot = []
# end the session
with InterFace.lock:
InterFace.global_session_id += 1
session_id = InterFace.global_session_id
return (state_chatbot, state_chatbot, gr.Textbox.update(value=''), session_id)
async def cancel_local_func(state_chatbot: Sequence, cancel_btn: gr.Button,
reset_btn: gr.Button, session_id: int):
"""stop the session.
Args:
instruction_txtbox (str): user's prompt
state_chatbot (Sequence): the chatting history
cancel_btn (gr.Button): the cancel button
reset_btn (gr.Button): the reset button
session_id (int): the session id
"""
yield (state_chatbot, disable_btn, disable_btn, session_id)
InterFace.async_engine.stop_session(session_id)
# pytorch backend does not support resume chat history now
if InterFace.async_engine.backend == 'pytorch':
yield (state_chatbot, disable_btn, enable_btn, session_id)
else:
with InterFace.lock:
InterFace.global_session_id += 1
session_id = InterFace.global_session_id
messages = []
for qa in state_chatbot:
messages.append(dict(role='user', content=qa[0]))
if qa[1] is not None:
messages.append(dict(role='assistant', content=qa[1]))
gen_config = GenerationConfig(max_new_tokens=0)
async for out in InterFace.async_engine.generate(messages,
session_id,
gen_config=gen_config,
stream_response=True,
sequence_start=True,
sequence_end=False):
pass
yield (state_chatbot, disable_btn, enable_btn, session_id)
with gr.Blocks(css=CSS, theme=THEME) as demo:
state_chatbot = gr.State([])
state_session_id = gr.State(0)
with gr.Column(elem_id='container'):
gr.Markdown('## Internlm2-math-plus-7b')
gr.Markdown('[InternLM Math GitHub Page](https://github.com/InternLM/InternLM-Math)')
chatbot = gr.Chatbot(
elem_id='chatbot',
label=InterFace.async_engine.engine.model_name)
instruction_txtbox = gr.Textbox(
placeholder='Please input the instruction',
label='Instruction')
with gr.Row():
cancel_btn = gr.Button(value='Cancel', interactive=False)
reset_btn = gr.Button(value='Reset')
with gr.Row():
request_output_len = gr.Slider(1,
2048,
value=1024,
step=1,
label='Maximum new tokens')
top_p = gr.Slider(0.01, 1, value=1.0, step=0.01, label='Top_p')
temperature = gr.Slider(0.01,
1.5,
value=0.01,
step=0.01,
label='Temperature')
send_event = instruction_txtbox.submit(chat_stream_local, [
instruction_txtbox, state_chatbot, cancel_btn, reset_btn,
state_session_id, top_p, temperature, request_output_len
], [state_chatbot, chatbot, cancel_btn, reset_btn])
instruction_txtbox.submit(
lambda: gr.Textbox.update(value=''),
[],
[instruction_txtbox],
)
cancel_btn.click(
cancel_local_func,
[state_chatbot, cancel_btn, reset_btn, state_session_id],
[state_chatbot, cancel_btn, reset_btn, state_session_id],
cancels=[send_event])
reset_btn.click(reset_local_func,
[instruction_txtbox, state_chatbot, state_session_id],
[state_chatbot, chatbot, instruction_txtbox, state_session_id],
cancels=[send_event])
def init():
with InterFace.lock:
InterFace.global_session_id += 1
new_session_id = InterFace.global_session_id
return new_session_id
demo.load(init, inputs=None, outputs=[state_session_id])
# demo.queue(concurrency_count=InterFace.async_engine.instance_num,
# max_size=100).launch()
demo.queue(max_size=1000).launch(max_threads=InterFace.async_engine.instance_num)