File size: 4,605 Bytes
2e64de9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

import torch
import numpy as np
from PIL import Image
import streamlit as st
import supervision as sv

from ultralytics import YOLO
from ultralytics import FastSAM
from ultralytics.models.fastsam import FastSAMPrompt

from transformers import SamModel, SamProcessor

from utils.efficient_sam import load, inference_with_point
import sys
sys.path.insert(1, './utils')
from edge_sam import sam_model_registry, SamPredictor
from edge_sam.onnx import SamPredictorONNX

DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Use ONNX to speed up the inference.
ENABLE_ONNX = False

ENCODER_ONNX_PATH = 'weights/edge_sam_3x_encoder.onnx' 
DECODER_ONNX_PATH = 'weights/edge_sam_3x_decoder.onnx'
EDGESAM_CHECKPOINT = 'weights/edge_sam_3x.pth'

SAM_MODEL = SamModel.from_pretrained("facebook/sam-vit-huge").to(DEVICE)
SAM_PROCESSOR = SamProcessor.from_pretrained("facebook/sam-vit-huge")
FASTSAM_MODEL = FastSAM('FastSAM-x.pt')
EFFICIENT_SAM_MODEL = load(device=DEVICE)

if ENABLE_ONNX:
    predictor = SamPredictorONNX(ENCODER_ONNX_PATH, DECODER_ONNX_PATH)
else:
    sam = sam_model_registry["edge_sam"](EDGESAM_CHECKPOINT, upsample_mode="bicubic")
    sam = sam.to(device=DEVICE)
    sam.eval()
    predictor = SamPredictor(sam)

@st.cache_data
def SAM_points_inference(image: np.ndarray, input_points) -> np.ndarray:
    print('Processing SAM... 📊')
    #input_points = [[[float(num) for num in sublist]] for sublist in global_points]
    #print(input_points)
    #input_points = [[[773.0, 167.0]]]
    x = int(input_points[0][0][0])
    y = int(input_points[0][0][1])
    
    inputs = SAM_PROCESSOR(
        Image.fromarray(image),
        input_points=[input_points],
        return_tensors="pt"
    ).to(DEVICE)

    with torch.no_grad():
        outputs = SAM_MODEL(**inputs)

    mask = SAM_PROCESSOR.image_processor.post_process_masks(
        outputs.pred_masks.cpu(),
        inputs["original_sizes"].cpu(),
        inputs["reshaped_input_sizes"].cpu()
    )[0][0][0].numpy()
    mask = mask[np.newaxis, ...]
    detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
    return detections

@st.cache_data
def FastSAM_points_inference(
    input,
    input_points,
    input_labels,
    input_size=1024, 
    iou_threshold=0.7,
    conf_threshold=0.25
):
    # scaled input points
    #input_points = [[[float(num) for num in sublist]] for sublist in input_points]
    print('Processing FastSAM... 📊')
    results = FASTSAM_MODEL(input,
                    device=DEVICE,
                    retina_masks=True,
                    iou=iou_threshold,
                    conf=conf_threshold,
                    imgsz=input_size)

    prompt_process = FastSAMPrompt(input, results, device=DEVICE)

    # Point prompt
    detections = prompt_process.point_prompt(points=input_points, pointlabel=[1])
    return detections

@st.cache_data
def EfficientSAM_points_inference(image: np.ndarray, input_points):
    x, y = int(input_points[0][0]), int(input_points[0][1])
    point = np.array([[int(x), int(y)]])
    mask = inference_with_point(image, point, EFFICIENT_SAM_MODEL, DEVICE)
    mask = mask[np.newaxis, ...]
    detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)

    return detections

@st.cache_data
def EdgeSAM_points_inference(
    image_input,
    input_points,
    input_labels,
    input_size=1024,
    better_quality=False,
    withContours=True,
    use_retina=True,
    mask_random_color=False,
):
    # convert the numpy image from BGR to RGB
    features = predictor.set_image(image_input)
    print(type(predictor))
    print(type(image_input))
    print(image_input.shape)
    print(image_input.dtype)
    if ENABLE_ONNX:
        input_points_np = np.array(input_points)[None]
        input_labels_np = np.array(input_labels)[None]
        
        masks, scores, _ = predictor.predict(
            features=features,
            point_coords=input_points_np,
            point_labels=input_labels_np,
        )
        masks = masks.squeeze(0)
        scores = scores.squeeze(0)
    else:
        input_points_np = np.array(input_points)
        input_labels_np = np.array(input_labels)
        masks, scores, logits = predictor.predict(
            features=features,
            point_coords=input_points_np,
            point_labels=input_labels_np,
            num_multimask_outputs=4,
            use_stability_score=True
        )

    print(f'scores: {scores}')
    area = masks.sum(axis=(1, 2))
    print(f'area: {area}')

    annotations = np.expand_dims(masks[scores.argmax()], axis=0)

    return annotations