Spaces:
Sleeping
Sleeping
Jose Benitez
commited on
Commit
·
aa36c04
1
Parent(s):
7048651
add files
Browse files- .DS_Store +0 -0
- .gitattributes +2 -0
- README.md +12 -0
- app.py +251 -0
- efficient_sam_s_cpu.jit +3 -0
- efficient_sam_s_gpu.jit +3 -0
- examples/.DS_Store +0 -0
- examples/fruits.jpg +0 -0
- requirements.txt +10 -0
- utils/draw.py +33 -0
- utils/efficient_sam.py +80 -0
- utils/tools.py +443 -0
- utils/tools_gradio.py +176 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
.gitattributes
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
efficient_sam_s_gpu.jit filter=lfs diff=lfs merge=lfs -text
|
2 |
+
efficient_sam_s_cpu.jit filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: SAM Arena
|
3 |
+
emoji: 🐢
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: green
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.9.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Thanks to the following repos:
|
2 |
+
# https://huggingface.co/spaces/An-619/FastSAM/blob/main/app_gradio.py
|
3 |
+
# https://huggingface.co/spaces/SkalskiP/EfficientSAM
|
4 |
+
from typing import Tuple
|
5 |
+
|
6 |
+
from ultralytics import YOLO
|
7 |
+
from PIL import ImageDraw
|
8 |
+
from PIL import Image
|
9 |
+
import gradio as gr
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
|
13 |
+
from transformers import SamModel, SamProcessor
|
14 |
+
|
15 |
+
import supervision as sv
|
16 |
+
from utils.tools_gradio import fast_process
|
17 |
+
from utils.tools import format_results, point_prompt
|
18 |
+
from utils.draw import draw_circle, calculate_dynamic_circle_radius
|
19 |
+
from utils.efficient_sam import load, inference_with_box, inference_with_point
|
20 |
+
|
21 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
+
# Load the pre-trained models
|
23 |
+
FASTSAM_MODEL = YOLO('FastSAM-s.pt')
|
24 |
+
SAM_MODEL = SamModel.from_pretrained("facebook/sam-vit-huge").to(DEVICE)
|
25 |
+
SAM_PROCESSOR = SamProcessor.from_pretrained("facebook/sam-vit-huge")
|
26 |
+
EFFICIENT_SAM_MODEL = load(device=DEVICE)
|
27 |
+
|
28 |
+
MASK_COLOR = sv.Color.from_hex("#FF0000")
|
29 |
+
PROMPT_COLOR = sv.Color.from_hex("#D3D3D3")
|
30 |
+
MASK_ANNOTATOR = sv.MaskAnnotator(
|
31 |
+
color=MASK_COLOR,
|
32 |
+
color_lookup=sv.ColorLookup.INDEX)
|
33 |
+
|
34 |
+
title = "<center><strong><font size='8'>🤗 Segment Anything Model Arena ⚔️</font></strong></center>"
|
35 |
+
|
36 |
+
description = "<center><font size='4'>This is a demo of the <strong>Segment Anything Model Arena</strong>, a collection of models for segmenting anything. "
|
37 |
+
|
38 |
+
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
|
39 |
+
|
40 |
+
#examples = [["examples/retail01.png"], ["examples/vend01.png"], ["examples/vend02.png"]]
|
41 |
+
|
42 |
+
POINT_EXAMPLES = [
|
43 |
+
['https://media.roboflow.com/efficient-sam/corgi.jpg', 1291, 751],
|
44 |
+
['https://media.roboflow.com/efficient-sam/horses.jpg', 1168, 939],
|
45 |
+
['https://media.roboflow.com/efficient-sam/bears.jpg', 913, 1051]
|
46 |
+
]
|
47 |
+
|
48 |
+
#default_example = examples[0]
|
49 |
+
|
50 |
+
def annotate_image_with_point_prompt_result(
|
51 |
+
image: np.ndarray,
|
52 |
+
detections: sv.Detections,
|
53 |
+
x: int,
|
54 |
+
y: int
|
55 |
+
) -> np.ndarray:
|
56 |
+
h, w, _ = image.shape
|
57 |
+
bgr_image = image[:, :, ::-1]
|
58 |
+
annotated_bgr_image = MASK_ANNOTATOR.annotate(
|
59 |
+
scene=bgr_image, detections=detections)
|
60 |
+
annotated_bgr_image = draw_circle(
|
61 |
+
scene=annotated_bgr_image,
|
62 |
+
center=sv.Point(x=x, y=y),
|
63 |
+
radius=calculate_dynamic_circle_radius(resolution_wh=(w, h)),
|
64 |
+
color=PROMPT_COLOR)
|
65 |
+
return annotated_bgr_image[:, :, ::-1]
|
66 |
+
|
67 |
+
def SAM_points_inference(image: np.ndarray) -> np.ndarray:
|
68 |
+
global global_points
|
69 |
+
input_points = [[[float(num) for num in sublist]] for sublist in global_points]
|
70 |
+
print(input_points)
|
71 |
+
#input_points = [[[773.0, 167.0]]]
|
72 |
+
x = int(input_points[0][0][0])
|
73 |
+
y = int(input_points[0][0][1])
|
74 |
+
|
75 |
+
inputs = SAM_PROCESSOR(
|
76 |
+
Image.fromarray(image),
|
77 |
+
input_points=[input_points],
|
78 |
+
return_tensors="pt"
|
79 |
+
).to(DEVICE)
|
80 |
+
|
81 |
+
with torch.no_grad():
|
82 |
+
outputs = SAM_MODEL(**inputs)
|
83 |
+
|
84 |
+
mask = SAM_PROCESSOR.image_processor.post_process_masks(
|
85 |
+
outputs.pred_masks.cpu(),
|
86 |
+
inputs["original_sizes"].cpu(),
|
87 |
+
inputs["reshaped_input_sizes"].cpu()
|
88 |
+
)[0][0][0].numpy()
|
89 |
+
mask = mask[np.newaxis, ...]
|
90 |
+
detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
|
91 |
+
|
92 |
+
return annotate_image_with_point_prompt_result(
|
93 |
+
image=image, detections=detections, x=x, y=y)
|
94 |
+
|
95 |
+
def FastSAM_points_inference(
|
96 |
+
input,
|
97 |
+
input_size=1024,
|
98 |
+
iou_threshold=0.7,
|
99 |
+
conf_threshold=0.25,
|
100 |
+
better_quality=False,
|
101 |
+
withContours=True,
|
102 |
+
use_retina=True,
|
103 |
+
mask_random_color=True,
|
104 |
+
):
|
105 |
+
global global_points
|
106 |
+
global global_point_label
|
107 |
+
input = Image.fromarray(input)
|
108 |
+
input_size = int(input_size) # 确保 imgsz 是整数
|
109 |
+
# Thanks for the suggestion by hysts in HuggingFace.
|
110 |
+
w, h = input.size
|
111 |
+
scale = input_size / max(w, h)
|
112 |
+
new_w = int(w * scale)
|
113 |
+
new_h = int(h * scale)
|
114 |
+
input = input.resize((new_w, new_h))
|
115 |
+
|
116 |
+
scaled_points = [[int(x * scale) for x in point] for point in global_points]
|
117 |
+
|
118 |
+
results = FASTSAM_MODEL(input,
|
119 |
+
device=DEVICE,
|
120 |
+
retina_masks=True,
|
121 |
+
iou=iou_threshold,
|
122 |
+
conf=conf_threshold,
|
123 |
+
imgsz=input_size,)
|
124 |
+
|
125 |
+
results = format_results(results[0], 0)
|
126 |
+
annotations, _ = point_prompt(results, scaled_points, global_point_label, new_h, new_w)
|
127 |
+
annotations = np.array([annotations])
|
128 |
+
|
129 |
+
fig = fast_process(annotations=annotations,
|
130 |
+
image=input,
|
131 |
+
device=DEVICE,
|
132 |
+
scale=(1024 // input_size),
|
133 |
+
better_quality=better_quality,
|
134 |
+
mask_random_color=mask_random_color,
|
135 |
+
bbox=None,
|
136 |
+
use_retina=use_retina,
|
137 |
+
withContours=withContours,)
|
138 |
+
|
139 |
+
global_points = []
|
140 |
+
global_point_label = []
|
141 |
+
|
142 |
+
return fig
|
143 |
+
|
144 |
+
def EfficientSAM_points_inference(image: np.ndarray):
|
145 |
+
x, y = int(global_points[0][0]), int(global_points[0][1])
|
146 |
+
point = np.array([[int(x), int(y)]])
|
147 |
+
mask = inference_with_point(image, point, EFFICIENT_SAM_MODEL, DEVICE)
|
148 |
+
mask = mask[np.newaxis, ...]
|
149 |
+
detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
|
150 |
+
|
151 |
+
return annotate_image_with_point_prompt_result(image=image, detections=detections, x=x, y=y)
|
152 |
+
|
153 |
+
def get_points_with_draw(image, label, evt: gr.SelectData):
|
154 |
+
global global_points
|
155 |
+
global global_point_label
|
156 |
+
|
157 |
+
x, y = evt.index[0], evt.index[1]
|
158 |
+
point_radius, point_color = 15, (255, 0, 0) if label == 'Add Mask' else (255, 0, 255)
|
159 |
+
global_points.append([x, y])
|
160 |
+
global_point_label.append(1 if label == 'Add Mask' else 0)
|
161 |
+
|
162 |
+
print(x, y, label == 'Add Mask')
|
163 |
+
image = Image.fromarray(image)
|
164 |
+
draw = ImageDraw.Draw(image)
|
165 |
+
draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color)
|
166 |
+
return image
|
167 |
+
|
168 |
+
def clear(_: np.ndarray) -> Tuple[None, None, None, None]:
|
169 |
+
return None, None, None, None
|
170 |
+
|
171 |
+
gr_input_image = gr.Image(label="Input", value='examples/fruits.jpg')
|
172 |
+
|
173 |
+
fast_sam_segmented_image = gr.Image(label="Fast SAM", interactive=False, type='pil')
|
174 |
+
|
175 |
+
edge_sam_segmented_imaged = gr.Image(label="Edge SAM", interactive=False, type='pil')
|
176 |
+
|
177 |
+
|
178 |
+
global_points = []
|
179 |
+
global_point_label = []
|
180 |
+
|
181 |
+
with gr.Blocks() as demo:
|
182 |
+
with gr.Tab("Points prompt"):
|
183 |
+
# Input Image
|
184 |
+
with gr.Row(variant="panel"):
|
185 |
+
with gr.Column(scale=1, min_width="320", variant="compact"):
|
186 |
+
gr_input_image.render()
|
187 |
+
|
188 |
+
# Submit & Clear
|
189 |
+
with gr.Row():
|
190 |
+
with gr.Column():
|
191 |
+
with gr.Row():
|
192 |
+
add_or_remove = gr.Radio(["Add Mask", "Remove Area"], value="Add Mask", label="Point label (foreground/background)")
|
193 |
+
with gr.Column():
|
194 |
+
inference_point_button = gr.Button("Segment", variant='primary')
|
195 |
+
clear_button = gr.Button("Clear points", variant='secondary')
|
196 |
+
|
197 |
+
# Segment Results Grid
|
198 |
+
with gr.Row(variant="panel"):
|
199 |
+
with gr.Column(scale=1):
|
200 |
+
sam_segmented_image = gr.Image(label="SAM")
|
201 |
+
with gr.Column(scale=1):
|
202 |
+
efficient_sam_segmented_image = gr.Image(label="Efficient SAM")
|
203 |
+
|
204 |
+
with gr.Row(variant="panel"):
|
205 |
+
with gr.Column(scale=1):
|
206 |
+
fast_sam_segmented_image.render()
|
207 |
+
with gr.Column(scale=1):
|
208 |
+
edge_sam_segmented_imaged.render()
|
209 |
+
|
210 |
+
gr.Markdown("AI Generated Examples")
|
211 |
+
# gr.Examples(examples=examples,
|
212 |
+
# inputs=[gr_input_image],
|
213 |
+
# # outputs=sam_segmented_image,
|
214 |
+
# # fn=segment_with_points,
|
215 |
+
# # cache_examples=True,
|
216 |
+
# examples_per_page=3)
|
217 |
+
|
218 |
+
gr_input_image.select(get_points_with_draw, [gr_input_image, add_or_remove], gr_input_image)
|
219 |
+
|
220 |
+
inference_point_button.click(
|
221 |
+
SAM_points_inference,
|
222 |
+
inputs=[gr_input_image],
|
223 |
+
outputs=[sam_segmented_image]
|
224 |
+
)
|
225 |
+
|
226 |
+
inference_point_button.click(
|
227 |
+
EfficientSAM_points_inference,
|
228 |
+
inputs=[gr_input_image],
|
229 |
+
outputs=[efficient_sam_segmented_image])
|
230 |
+
|
231 |
+
inference_point_button.click(
|
232 |
+
FastSAM_points_inference,
|
233 |
+
inputs=[gr_input_image],
|
234 |
+
outputs=[fast_sam_segmented_image])
|
235 |
+
|
236 |
+
# inference_point_button.click(
|
237 |
+
# EdgeSAM_points_inference,
|
238 |
+
# inputs=[gr_input_image],
|
239 |
+
# outputs=[fast_sam_segmented_image, gr_input_image])
|
240 |
+
|
241 |
+
gr_input_image.change(
|
242 |
+
clear,
|
243 |
+
inputs=gr_input_image,
|
244 |
+
outputs=[efficient_sam_segmented_image, sam_segmented_image, fast_sam_segmented_image]
|
245 |
+
)
|
246 |
+
|
247 |
+
clear_button.click(clear, outputs=[gr_input_image, efficient_sam_segmented_image, sam_segmented_image, fast_sam_segmented_image])
|
248 |
+
|
249 |
+
|
250 |
+
demo.queue()
|
251 |
+
demo.launch(debug=True, show_error=True)
|
efficient_sam_s_cpu.jit
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b63ab268e9020b0fb7fc9f46e742644d4c9ea6e5d9caf56045f0afb6475db09
|
3 |
+
size 106006979
|
efficient_sam_s_gpu.jit
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e47c589ead2c6a80d38050ce63083a551e288db27113d534e0278270fc7cba26
|
3 |
+
size 106006979
|
examples/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
examples/fruits.jpg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
|
4 |
+
pillow
|
5 |
+
gradio==3.44.0
|
6 |
+
transformers
|
7 |
+
supervision
|
8 |
+
ultralytics
|
9 |
+
clip
|
10 |
+
opencv-python
|
utils/draw.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#https://huggingface.co/spaces/SkalskiP/EfficientSAM
|
2 |
+
from typing import Tuple
|
3 |
+
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import supervision as sv
|
7 |
+
|
8 |
+
|
9 |
+
def draw_circle(
|
10 |
+
scene: np.ndarray, center: sv.Point, color: sv.Color, radius: int = 2
|
11 |
+
) -> np.ndarray:
|
12 |
+
cv2.circle(
|
13 |
+
scene,
|
14 |
+
center=center.as_xy_int_tuple(),
|
15 |
+
radius=radius,
|
16 |
+
color=color.as_bgr(),
|
17 |
+
thickness=-1,
|
18 |
+
)
|
19 |
+
return scene
|
20 |
+
|
21 |
+
|
22 |
+
def calculate_dynamic_circle_radius(resolution_wh: Tuple[int, int]) -> int:
|
23 |
+
min_dimension = min(resolution_wh)
|
24 |
+
if min_dimension < 480:
|
25 |
+
return 4
|
26 |
+
if min_dimension < 720:
|
27 |
+
return 8
|
28 |
+
if min_dimension < 1080:
|
29 |
+
return 8
|
30 |
+
if min_dimension < 2160:
|
31 |
+
return 16
|
32 |
+
else:
|
33 |
+
return 16
|
utils/efficient_sam.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from torchvision.transforms import ToTensor
|
4 |
+
|
5 |
+
GPU_EFFICIENT_SAM_CHECKPOINT = "efficient_sam_s_gpu.jit"
|
6 |
+
CPU_EFFICIENT_SAM_CHECKPOINT = "efficient_sam_s_cpu.jit"
|
7 |
+
|
8 |
+
|
9 |
+
def load(device: torch.device) -> torch.jit.ScriptModule:
|
10 |
+
if device.type == "cuda":
|
11 |
+
model = torch.jit.load(GPU_EFFICIENT_SAM_CHECKPOINT)
|
12 |
+
else:
|
13 |
+
model = torch.jit.load(CPU_EFFICIENT_SAM_CHECKPOINT)
|
14 |
+
model.eval()
|
15 |
+
return model
|
16 |
+
|
17 |
+
|
18 |
+
def inference_with_box(
|
19 |
+
image: np.ndarray,
|
20 |
+
box: np.ndarray,
|
21 |
+
model: torch.jit.ScriptModule,
|
22 |
+
device: torch.device
|
23 |
+
) -> np.ndarray:
|
24 |
+
bbox = torch.reshape(torch.tensor(box), [1, 1, 2, 2])
|
25 |
+
bbox_labels = torch.reshape(torch.tensor([2, 3]), [1, 1, 2])
|
26 |
+
img_tensor = ToTensor()(image)
|
27 |
+
|
28 |
+
predicted_logits, predicted_iou = model(
|
29 |
+
img_tensor[None, ...].to(device),
|
30 |
+
bbox.to(device),
|
31 |
+
bbox_labels.to(device),
|
32 |
+
)
|
33 |
+
predicted_logits = predicted_logits.cpu()
|
34 |
+
all_masks = torch.ge(torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5).numpy()
|
35 |
+
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy()
|
36 |
+
|
37 |
+
max_predicted_iou = -1
|
38 |
+
selected_mask_using_predicted_iou = None
|
39 |
+
for m in range(all_masks.shape[0]):
|
40 |
+
curr_predicted_iou = predicted_iou[m]
|
41 |
+
if (
|
42 |
+
curr_predicted_iou > max_predicted_iou
|
43 |
+
or selected_mask_using_predicted_iou is None
|
44 |
+
):
|
45 |
+
max_predicted_iou = curr_predicted_iou
|
46 |
+
selected_mask_using_predicted_iou = all_masks[m]
|
47 |
+
return selected_mask_using_predicted_iou
|
48 |
+
|
49 |
+
|
50 |
+
def inference_with_point(
|
51 |
+
image: np.ndarray,
|
52 |
+
point: np.ndarray,
|
53 |
+
model: torch.jit.ScriptModule,
|
54 |
+
device: torch.device
|
55 |
+
) -> np.ndarray:
|
56 |
+
pts_sampled = torch.reshape(torch.tensor(point), [1, 1, -1, 2])
|
57 |
+
max_num_pts = pts_sampled.shape[2]
|
58 |
+
pts_labels = torch.ones(1, 1, max_num_pts)
|
59 |
+
img_tensor = ToTensor()(image)
|
60 |
+
|
61 |
+
predicted_logits, predicted_iou = model(
|
62 |
+
img_tensor[None, ...].to(device),
|
63 |
+
pts_sampled.to(device),
|
64 |
+
pts_labels.to(device),
|
65 |
+
)
|
66 |
+
predicted_logits = predicted_logits.cpu()
|
67 |
+
all_masks = torch.ge(torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5).numpy()
|
68 |
+
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy()
|
69 |
+
|
70 |
+
max_predicted_iou = -1
|
71 |
+
selected_mask_using_predicted_iou = None
|
72 |
+
for m in range(all_masks.shape[0]):
|
73 |
+
curr_predicted_iou = predicted_iou[m]
|
74 |
+
if (
|
75 |
+
curr_predicted_iou > max_predicted_iou
|
76 |
+
or selected_mask_using_predicted_iou is None
|
77 |
+
):
|
78 |
+
max_predicted_iou = curr_predicted_iou
|
79 |
+
selected_mask_using_predicted_iou = all_masks[m]
|
80 |
+
return selected_mask_using_predicted_iou
|
utils/tools.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://huggingface.co/spaces/An-619/FastSAM/edit/main/utils/tools.py
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
import os
|
8 |
+
import sys
|
9 |
+
import clip
|
10 |
+
|
11 |
+
|
12 |
+
def convert_box_xywh_to_xyxy(box):
|
13 |
+
if len(box) == 4:
|
14 |
+
return [box[0], box[1], box[0] + box[2], box[1] + box[3]]
|
15 |
+
else:
|
16 |
+
result = []
|
17 |
+
for b in box:
|
18 |
+
b = convert_box_xywh_to_xyxy(b)
|
19 |
+
result.append(b)
|
20 |
+
return result
|
21 |
+
|
22 |
+
|
23 |
+
def segment_image(image, bbox):
|
24 |
+
image_array = np.array(image)
|
25 |
+
segmented_image_array = np.zeros_like(image_array)
|
26 |
+
x1, y1, x2, y2 = bbox
|
27 |
+
segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2]
|
28 |
+
segmented_image = Image.fromarray(segmented_image_array)
|
29 |
+
black_image = Image.new("RGB", image.size, (255, 255, 255))
|
30 |
+
# transparency_mask = np.zeros_like((), dtype=np.uint8)
|
31 |
+
transparency_mask = np.zeros(
|
32 |
+
(image_array.shape[0], image_array.shape[1]), dtype=np.uint8
|
33 |
+
)
|
34 |
+
transparency_mask[y1:y2, x1:x2] = 255
|
35 |
+
transparency_mask_image = Image.fromarray(transparency_mask, mode="L")
|
36 |
+
black_image.paste(segmented_image, mask=transparency_mask_image)
|
37 |
+
return black_image
|
38 |
+
|
39 |
+
|
40 |
+
def format_results(result, filter=0):
|
41 |
+
annotations = []
|
42 |
+
n = len(result.masks.data)
|
43 |
+
for i in range(n):
|
44 |
+
annotation = {}
|
45 |
+
mask = result.masks.data[i] == 1.0
|
46 |
+
|
47 |
+
if torch.sum(mask) < filter:
|
48 |
+
continue
|
49 |
+
annotation["id"] = i
|
50 |
+
annotation["segmentation"] = mask.cpu().numpy()
|
51 |
+
annotation["bbox"] = result.boxes.data[i]
|
52 |
+
annotation["score"] = result.boxes.conf[i]
|
53 |
+
annotation["area"] = annotation["segmentation"].sum()
|
54 |
+
annotations.append(annotation)
|
55 |
+
return annotations
|
56 |
+
|
57 |
+
|
58 |
+
def filter_masks(annotations): # filter the overlap mask
|
59 |
+
annotations.sort(key=lambda x: x["area"], reverse=True)
|
60 |
+
to_remove = set()
|
61 |
+
for i in range(0, len(annotations)):
|
62 |
+
a = annotations[i]
|
63 |
+
for j in range(i + 1, len(annotations)):
|
64 |
+
b = annotations[j]
|
65 |
+
if i != j and j not in to_remove:
|
66 |
+
# check if
|
67 |
+
if b["area"] < a["area"]:
|
68 |
+
if (a["segmentation"] & b["segmentation"]).sum() / b[
|
69 |
+
"segmentation"
|
70 |
+
].sum() > 0.8:
|
71 |
+
to_remove.add(j)
|
72 |
+
|
73 |
+
return [a for i, a in enumerate(annotations) if i not in to_remove], to_remove
|
74 |
+
|
75 |
+
|
76 |
+
def get_bbox_from_mask(mask):
|
77 |
+
mask = mask.astype(np.uint8)
|
78 |
+
contours, hierarchy = cv2.findContours(
|
79 |
+
mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
80 |
+
)
|
81 |
+
x1, y1, w, h = cv2.boundingRect(contours[0])
|
82 |
+
x2, y2 = x1 + w, y1 + h
|
83 |
+
if len(contours) > 1:
|
84 |
+
for b in contours:
|
85 |
+
x_t, y_t, w_t, h_t = cv2.boundingRect(b)
|
86 |
+
# 将多个bbox合并成一个
|
87 |
+
x1 = min(x1, x_t)
|
88 |
+
y1 = min(y1, y_t)
|
89 |
+
x2 = max(x2, x_t + w_t)
|
90 |
+
y2 = max(y2, y_t + h_t)
|
91 |
+
h = y2 - y1
|
92 |
+
w = x2 - x1
|
93 |
+
return [x1, y1, x2, y2]
|
94 |
+
|
95 |
+
|
96 |
+
def fast_process(
|
97 |
+
annotations, args, mask_random_color, bbox=None, points=None, edges=False
|
98 |
+
):
|
99 |
+
if isinstance(annotations[0], dict):
|
100 |
+
annotations = [annotation["segmentation"] for annotation in annotations]
|
101 |
+
result_name = os.path.basename(args.img_path)
|
102 |
+
image = cv2.imread(args.img_path)
|
103 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
104 |
+
original_h = image.shape[0]
|
105 |
+
original_w = image.shape[1]
|
106 |
+
if sys.platform == "darwin":
|
107 |
+
plt.switch_backend("TkAgg")
|
108 |
+
plt.figure(figsize=(original_w/100, original_h/100))
|
109 |
+
# Add subplot with no margin.
|
110 |
+
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
|
111 |
+
plt.margins(0, 0)
|
112 |
+
plt.gca().xaxis.set_major_locator(plt.NullLocator())
|
113 |
+
plt.gca().yaxis.set_major_locator(plt.NullLocator())
|
114 |
+
plt.imshow(image)
|
115 |
+
if args.better_quality == True:
|
116 |
+
if isinstance(annotations[0], torch.Tensor):
|
117 |
+
annotations = np.array(annotations.cpu())
|
118 |
+
for i, mask in enumerate(annotations):
|
119 |
+
mask = cv2.morphologyEx(
|
120 |
+
mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)
|
121 |
+
)
|
122 |
+
annotations[i] = cv2.morphologyEx(
|
123 |
+
mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)
|
124 |
+
)
|
125 |
+
if args.device == "cpu":
|
126 |
+
annotations = np.array(annotations)
|
127 |
+
fast_show_mask(
|
128 |
+
annotations,
|
129 |
+
plt.gca(),
|
130 |
+
random_color=mask_random_color,
|
131 |
+
bbox=bbox,
|
132 |
+
points=points,
|
133 |
+
point_label=args.point_label,
|
134 |
+
retinamask=args.retina,
|
135 |
+
target_height=original_h,
|
136 |
+
target_width=original_w,
|
137 |
+
)
|
138 |
+
else:
|
139 |
+
if isinstance(annotations[0], np.ndarray):
|
140 |
+
annotations = torch.from_numpy(annotations)
|
141 |
+
fast_show_mask_gpu(
|
142 |
+
annotations,
|
143 |
+
plt.gca(),
|
144 |
+
random_color=args.randomcolor,
|
145 |
+
bbox=bbox,
|
146 |
+
points=points,
|
147 |
+
point_label=args.point_label,
|
148 |
+
retinamask=args.retina,
|
149 |
+
target_height=original_h,
|
150 |
+
target_width=original_w,
|
151 |
+
)
|
152 |
+
if isinstance(annotations, torch.Tensor):
|
153 |
+
annotations = annotations.cpu().numpy()
|
154 |
+
if args.withContours == True:
|
155 |
+
contour_all = []
|
156 |
+
temp = np.zeros((original_h, original_w, 1))
|
157 |
+
for i, mask in enumerate(annotations):
|
158 |
+
if type(mask) == dict:
|
159 |
+
mask = mask["segmentation"]
|
160 |
+
annotation = mask.astype(np.uint8)
|
161 |
+
if args.retina == False:
|
162 |
+
annotation = cv2.resize(
|
163 |
+
annotation,
|
164 |
+
(original_w, original_h),
|
165 |
+
interpolation=cv2.INTER_NEAREST,
|
166 |
+
)
|
167 |
+
contours, hierarchy = cv2.findContours(
|
168 |
+
annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
|
169 |
+
)
|
170 |
+
for contour in contours:
|
171 |
+
contour_all.append(contour)
|
172 |
+
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
|
173 |
+
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.8])
|
174 |
+
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
175 |
+
plt.imshow(contour_mask)
|
176 |
+
|
177 |
+
save_path = args.output
|
178 |
+
if not os.path.exists(save_path):
|
179 |
+
os.makedirs(save_path)
|
180 |
+
plt.axis("off")
|
181 |
+
fig = plt.gcf()
|
182 |
+
plt.draw()
|
183 |
+
|
184 |
+
try:
|
185 |
+
buf = fig.canvas.tostring_rgb()
|
186 |
+
except AttributeError:
|
187 |
+
fig.canvas.draw()
|
188 |
+
buf = fig.canvas.tostring_rgb()
|
189 |
+
|
190 |
+
cols, rows = fig.canvas.get_width_height()
|
191 |
+
img_array = np.fromstring(buf, dtype=np.uint8).reshape(rows, cols, 3)
|
192 |
+
cv2.imwrite(os.path.join(save_path, result_name), cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR))
|
193 |
+
|
194 |
+
|
195 |
+
# CPU post process
|
196 |
+
def fast_show_mask(
|
197 |
+
annotation,
|
198 |
+
ax,
|
199 |
+
random_color=False,
|
200 |
+
bbox=None,
|
201 |
+
points=None,
|
202 |
+
point_label=None,
|
203 |
+
retinamask=True,
|
204 |
+
target_height=960,
|
205 |
+
target_width=960,
|
206 |
+
):
|
207 |
+
msak_sum = annotation.shape[0]
|
208 |
+
height = annotation.shape[1]
|
209 |
+
weight = annotation.shape[2]
|
210 |
+
# 将annotation 按照面积 排序
|
211 |
+
areas = np.sum(annotation, axis=(1, 2))
|
212 |
+
sorted_indices = np.argsort(areas)
|
213 |
+
annotation = annotation[sorted_indices]
|
214 |
+
|
215 |
+
index = (annotation != 0).argmax(axis=0)
|
216 |
+
if random_color == True:
|
217 |
+
color = np.random.random((msak_sum, 1, 1, 3))
|
218 |
+
else:
|
219 |
+
color = np.ones((msak_sum, 1, 1, 3)) * np.array(
|
220 |
+
[30 / 255, 144 / 255, 255 / 255]
|
221 |
+
)
|
222 |
+
transparency = np.ones((msak_sum, 1, 1, 1)) * 0.6
|
223 |
+
visual = np.concatenate([color, transparency], axis=-1)
|
224 |
+
mask_image = np.expand_dims(annotation, -1) * visual
|
225 |
+
|
226 |
+
show = np.zeros((height, weight, 4))
|
227 |
+
h_indices, w_indices = np.meshgrid(
|
228 |
+
np.arange(height), np.arange(weight), indexing="ij"
|
229 |
+
)
|
230 |
+
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
231 |
+
# 使用向量化索引更新show的值
|
232 |
+
show[h_indices, w_indices, :] = mask_image[indices]
|
233 |
+
if bbox is not None:
|
234 |
+
x1, y1, x2, y2 = bbox
|
235 |
+
ax.add_patch(
|
236 |
+
plt.Rectangle(
|
237 |
+
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
|
238 |
+
)
|
239 |
+
)
|
240 |
+
# draw point
|
241 |
+
if points is not None:
|
242 |
+
plt.scatter(
|
243 |
+
[point[0] for i, point in enumerate(points) if point_label[i] == 1],
|
244 |
+
[point[1] for i, point in enumerate(points) if point_label[i] == 1],
|
245 |
+
s=20,
|
246 |
+
c="y",
|
247 |
+
)
|
248 |
+
plt.scatter(
|
249 |
+
[point[0] for i, point in enumerate(points) if point_label[i] == 0],
|
250 |
+
[point[1] for i, point in enumerate(points) if point_label[i] == 0],
|
251 |
+
s=20,
|
252 |
+
c="m",
|
253 |
+
)
|
254 |
+
|
255 |
+
if retinamask == False:
|
256 |
+
show = cv2.resize(
|
257 |
+
show, (target_width, target_height), interpolation=cv2.INTER_NEAREST
|
258 |
+
)
|
259 |
+
ax.imshow(show)
|
260 |
+
|
261 |
+
|
262 |
+
def fast_show_mask_gpu(
|
263 |
+
annotation,
|
264 |
+
ax,
|
265 |
+
random_color=False,
|
266 |
+
bbox=None,
|
267 |
+
points=None,
|
268 |
+
point_label=None,
|
269 |
+
retinamask=True,
|
270 |
+
target_height=960,
|
271 |
+
target_width=960,
|
272 |
+
):
|
273 |
+
msak_sum = annotation.shape[0]
|
274 |
+
height = annotation.shape[1]
|
275 |
+
weight = annotation.shape[2]
|
276 |
+
areas = torch.sum(annotation, dim=(1, 2))
|
277 |
+
sorted_indices = torch.argsort(areas, descending=False)
|
278 |
+
annotation = annotation[sorted_indices]
|
279 |
+
# 找每个位置第一个非零值下标
|
280 |
+
index = (annotation != 0).to(torch.long).argmax(dim=0)
|
281 |
+
if random_color == True:
|
282 |
+
color = torch.rand((msak_sum, 1, 1, 3)).to(annotation.device)
|
283 |
+
else:
|
284 |
+
color = torch.ones((msak_sum, 1, 1, 3)).to(annotation.device) * torch.tensor(
|
285 |
+
[30 / 255, 144 / 255, 255 / 255]
|
286 |
+
).to(annotation.device)
|
287 |
+
transparency = torch.ones((msak_sum, 1, 1, 1)).to(annotation.device) * 0.6
|
288 |
+
visual = torch.cat([color, transparency], dim=-1)
|
289 |
+
mask_image = torch.unsqueeze(annotation, -1) * visual
|
290 |
+
# 按index取数,index指每个位置选哪个batch的数��把mask_image转成一个batch的形式
|
291 |
+
show = torch.zeros((height, weight, 4)).to(annotation.device)
|
292 |
+
h_indices, w_indices = torch.meshgrid(
|
293 |
+
torch.arange(height), torch.arange(weight), indexing="ij"
|
294 |
+
)
|
295 |
+
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
296 |
+
# 使用向量化索引更新show的值
|
297 |
+
show[h_indices, w_indices, :] = mask_image[indices]
|
298 |
+
show_cpu = show.cpu().numpy()
|
299 |
+
if bbox is not None:
|
300 |
+
x1, y1, x2, y2 = bbox
|
301 |
+
ax.add_patch(
|
302 |
+
plt.Rectangle(
|
303 |
+
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
|
304 |
+
)
|
305 |
+
)
|
306 |
+
# draw point
|
307 |
+
if points is not None:
|
308 |
+
plt.scatter(
|
309 |
+
[point[0] for i, point in enumerate(points) if point_label[i] == 1],
|
310 |
+
[point[1] for i, point in enumerate(points) if point_label[i] == 1],
|
311 |
+
s=20,
|
312 |
+
c="y",
|
313 |
+
)
|
314 |
+
plt.scatter(
|
315 |
+
[point[0] for i, point in enumerate(points) if point_label[i] == 0],
|
316 |
+
[point[1] for i, point in enumerate(points) if point_label[i] == 0],
|
317 |
+
s=20,
|
318 |
+
c="m",
|
319 |
+
)
|
320 |
+
if retinamask == False:
|
321 |
+
show_cpu = cv2.resize(
|
322 |
+
show_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
|
323 |
+
)
|
324 |
+
ax.imshow(show_cpu)
|
325 |
+
|
326 |
+
|
327 |
+
# clip
|
328 |
+
@torch.no_grad()
|
329 |
+
def retriev(
|
330 |
+
model, preprocess, elements: [Image.Image], search_text: str, device
|
331 |
+
):
|
332 |
+
preprocessed_images = [preprocess(image).to(device) for image in elements]
|
333 |
+
tokenized_text = clip.tokenize([search_text]).to(device)
|
334 |
+
stacked_images = torch.stack(preprocessed_images)
|
335 |
+
image_features = model.encode_image(stacked_images)
|
336 |
+
text_features = model.encode_text(tokenized_text)
|
337 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
338 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
339 |
+
probs = 100.0 * image_features @ text_features.T
|
340 |
+
return probs[:, 0].softmax(dim=0)
|
341 |
+
|
342 |
+
|
343 |
+
def crop_image(annotations, image_like):
|
344 |
+
if isinstance(image_like, str):
|
345 |
+
image = Image.open(image_like)
|
346 |
+
else:
|
347 |
+
image = image_like
|
348 |
+
ori_w, ori_h = image.size
|
349 |
+
mask_h, mask_w = annotations[0]["segmentation"].shape
|
350 |
+
if ori_w != mask_w or ori_h != mask_h:
|
351 |
+
image = image.resize((mask_w, mask_h))
|
352 |
+
cropped_boxes = []
|
353 |
+
cropped_images = []
|
354 |
+
not_crop = []
|
355 |
+
origin_id = []
|
356 |
+
for _, mask in enumerate(annotations):
|
357 |
+
if np.sum(mask["segmentation"]) <= 100:
|
358 |
+
continue
|
359 |
+
origin_id.append(_)
|
360 |
+
bbox = get_bbox_from_mask(mask["segmentation"]) # mask 的 bbox
|
361 |
+
cropped_boxes.append(segment_image(image, bbox)) # 保存裁剪的图片
|
362 |
+
# cropped_boxes.append(segment_image(image,mask["segmentation"]))
|
363 |
+
cropped_images.append(bbox) # 保存裁剪的图片的bbox
|
364 |
+
return cropped_boxes, cropped_images, not_crop, origin_id, annotations
|
365 |
+
|
366 |
+
|
367 |
+
def box_prompt(masks, bbox, target_height, target_width):
|
368 |
+
h = masks.shape[1]
|
369 |
+
w = masks.shape[2]
|
370 |
+
if h != target_height or w != target_width:
|
371 |
+
bbox = [
|
372 |
+
int(bbox[0] * w / target_width),
|
373 |
+
int(bbox[1] * h / target_height),
|
374 |
+
int(bbox[2] * w / target_width),
|
375 |
+
int(bbox[3] * h / target_height),
|
376 |
+
]
|
377 |
+
bbox[0] = round(bbox[0]) if round(bbox[0]) > 0 else 0
|
378 |
+
bbox[1] = round(bbox[1]) if round(bbox[1]) > 0 else 0
|
379 |
+
bbox[2] = round(bbox[2]) if round(bbox[2]) < w else w
|
380 |
+
bbox[3] = round(bbox[3]) if round(bbox[3]) < h else h
|
381 |
+
|
382 |
+
# IoUs = torch.zeros(len(masks), dtype=torch.float32)
|
383 |
+
bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0])
|
384 |
+
|
385 |
+
masks_area = torch.sum(masks[:, bbox[1] : bbox[3], bbox[0] : bbox[2]], dim=(1, 2))
|
386 |
+
orig_masks_area = torch.sum(masks, dim=(1, 2))
|
387 |
+
|
388 |
+
union = bbox_area + orig_masks_area - masks_area
|
389 |
+
IoUs = masks_area / union
|
390 |
+
max_iou_index = torch.argmax(IoUs)
|
391 |
+
|
392 |
+
return masks[max_iou_index].cpu().numpy(), max_iou_index
|
393 |
+
|
394 |
+
|
395 |
+
def point_prompt(masks, points, point_label, target_height, target_width): # numpy 处理
|
396 |
+
h = masks[0]["segmentation"].shape[0]
|
397 |
+
w = masks[0]["segmentation"].shape[1]
|
398 |
+
if h != target_height or w != target_width:
|
399 |
+
points = [
|
400 |
+
[int(point[0] * w / target_width), int(point[1] * h / target_height)]
|
401 |
+
for point in points
|
402 |
+
]
|
403 |
+
onemask = np.zeros((h, w))
|
404 |
+
masks = sorted(masks, key=lambda x: x['area'], reverse=True)
|
405 |
+
for i, annotation in enumerate(masks):
|
406 |
+
if type(annotation) == dict:
|
407 |
+
mask = annotation['segmentation']
|
408 |
+
else:
|
409 |
+
mask = annotation
|
410 |
+
for i, point in enumerate(points):
|
411 |
+
if mask[point[1], point[0]] == 1 and point_label[i] == 1:
|
412 |
+
onemask[mask] = 1
|
413 |
+
if mask[point[1], point[0]] == 1 and point_label[i] == 0:
|
414 |
+
onemask[mask] = 0
|
415 |
+
onemask = onemask >= 1
|
416 |
+
return onemask, 0
|
417 |
+
|
418 |
+
|
419 |
+
def text_prompt(annotations, text, img_path, device, wider=False, threshold=0.9):
|
420 |
+
cropped_boxes, cropped_images, not_crop, origin_id, annotations_ = crop_image(
|
421 |
+
annotations, img_path
|
422 |
+
)
|
423 |
+
clip_model, preprocess = clip.load("./weights/CLIP_ViT_B_32.pt", device=device)
|
424 |
+
scores = retriev(
|
425 |
+
clip_model, preprocess, cropped_boxes, text, device=device
|
426 |
+
)
|
427 |
+
max_idx = scores.argsort()
|
428 |
+
max_idx = max_idx[-1]
|
429 |
+
max_idx = origin_id[int(max_idx)]
|
430 |
+
|
431 |
+
# find the biggest mask which contains the mask with max score
|
432 |
+
if wider:
|
433 |
+
mask0 = annotations_[max_idx]["segmentation"]
|
434 |
+
area0 = np.sum(mask0)
|
435 |
+
areas = [(i, np.sum(mask["segmentation"])) for i, mask in enumerate(annotations_) if i in origin_id]
|
436 |
+
areas = sorted(areas, key=lambda area: area[1], reverse=True)
|
437 |
+
indices = [area[0] for area in areas]
|
438 |
+
for index in indices:
|
439 |
+
if index == max_idx or np.sum(annotations_[index]["segmentation"] & mask0) / area0 > threshold:
|
440 |
+
max_idx = index
|
441 |
+
break
|
442 |
+
|
443 |
+
return annotations_[max_idx]["segmentation"], max_idx
|
utils/tools_gradio.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://huggingface.co/spaces/An-619/FastSAM/edit/main/utils/tools_gradio.py
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
def fast_process(
|
10 |
+
annotations,
|
11 |
+
image,
|
12 |
+
device,
|
13 |
+
scale,
|
14 |
+
better_quality=False,
|
15 |
+
mask_random_color=True,
|
16 |
+
bbox=None,
|
17 |
+
use_retina=True,
|
18 |
+
withContours=True,
|
19 |
+
):
|
20 |
+
if isinstance(annotations[0], dict):
|
21 |
+
annotations = [annotation['segmentation'] for annotation in annotations]
|
22 |
+
|
23 |
+
original_h = image.height
|
24 |
+
original_w = image.width
|
25 |
+
if better_quality:
|
26 |
+
if isinstance(annotations[0], torch.Tensor):
|
27 |
+
annotations = np.array(annotations.cpu())
|
28 |
+
for i, mask in enumerate(annotations):
|
29 |
+
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
|
30 |
+
annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
|
31 |
+
if device == 'cpu':
|
32 |
+
annotations = np.array(annotations)
|
33 |
+
inner_mask = fast_show_mask(
|
34 |
+
annotations,
|
35 |
+
plt.gca(),
|
36 |
+
random_color=mask_random_color,
|
37 |
+
bbox=bbox,
|
38 |
+
retinamask=use_retina,
|
39 |
+
target_height=original_h,
|
40 |
+
target_width=original_w,
|
41 |
+
)
|
42 |
+
else:
|
43 |
+
if isinstance(annotations[0], np.ndarray):
|
44 |
+
annotations = torch.from_numpy(annotations)
|
45 |
+
inner_mask = fast_show_mask_gpu(
|
46 |
+
annotations,
|
47 |
+
plt.gca(),
|
48 |
+
random_color=mask_random_color,
|
49 |
+
bbox=bbox,
|
50 |
+
retinamask=use_retina,
|
51 |
+
target_height=original_h,
|
52 |
+
target_width=original_w,
|
53 |
+
)
|
54 |
+
if isinstance(annotations, torch.Tensor):
|
55 |
+
annotations = annotations.cpu().numpy()
|
56 |
+
|
57 |
+
if withContours:
|
58 |
+
contour_all = []
|
59 |
+
temp = np.zeros((original_h, original_w, 1))
|
60 |
+
for i, mask in enumerate(annotations):
|
61 |
+
if type(mask) == dict:
|
62 |
+
mask = mask['segmentation']
|
63 |
+
annotation = mask.astype(np.uint8)
|
64 |
+
if use_retina == False:
|
65 |
+
annotation = cv2.resize(
|
66 |
+
annotation,
|
67 |
+
(original_w, original_h),
|
68 |
+
interpolation=cv2.INTER_NEAREST,
|
69 |
+
)
|
70 |
+
contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
71 |
+
for contour in contours:
|
72 |
+
contour_all.append(contour)
|
73 |
+
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale)
|
74 |
+
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
|
75 |
+
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
76 |
+
|
77 |
+
image = image.convert('RGBA')
|
78 |
+
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA')
|
79 |
+
image.paste(overlay_inner, (0, 0), overlay_inner)
|
80 |
+
|
81 |
+
if withContours:
|
82 |
+
overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), 'RGBA')
|
83 |
+
image.paste(overlay_contour, (0, 0), overlay_contour)
|
84 |
+
|
85 |
+
return image
|
86 |
+
|
87 |
+
|
88 |
+
# CPU post process
|
89 |
+
def fast_show_mask(
|
90 |
+
annotation,
|
91 |
+
ax,
|
92 |
+
random_color=False,
|
93 |
+
bbox=None,
|
94 |
+
retinamask=True,
|
95 |
+
target_height=960,
|
96 |
+
target_width=960,
|
97 |
+
):
|
98 |
+
mask_sum = annotation.shape[0]
|
99 |
+
height = annotation.shape[1]
|
100 |
+
weight = annotation.shape[2]
|
101 |
+
# 将annotation 按照面积 排序
|
102 |
+
areas = np.sum(annotation, axis=(1, 2))
|
103 |
+
sorted_indices = np.argsort(areas)[::1]
|
104 |
+
annotation = annotation[sorted_indices]
|
105 |
+
|
106 |
+
index = (annotation != 0).argmax(axis=0)
|
107 |
+
if random_color:
|
108 |
+
color = np.random.random((mask_sum, 1, 1, 3))
|
109 |
+
else:
|
110 |
+
color = np.ones((mask_sum, 1, 1, 3)) * np.array([30 / 255, 144 / 255, 255 / 255])
|
111 |
+
transparency = np.ones((mask_sum, 1, 1, 1)) * 0.6
|
112 |
+
visual = np.concatenate([color, transparency], axis=-1)
|
113 |
+
mask_image = np.expand_dims(annotation, -1) * visual
|
114 |
+
|
115 |
+
mask = np.zeros((height, weight, 4))
|
116 |
+
|
117 |
+
h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij')
|
118 |
+
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
119 |
+
|
120 |
+
mask[h_indices, w_indices, :] = mask_image[indices]
|
121 |
+
if bbox is not None:
|
122 |
+
x1, y1, x2, y2 = bbox
|
123 |
+
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
124 |
+
|
125 |
+
if not retinamask:
|
126 |
+
mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
|
127 |
+
|
128 |
+
return mask
|
129 |
+
|
130 |
+
|
131 |
+
def fast_show_mask_gpu(
|
132 |
+
annotation,
|
133 |
+
ax,
|
134 |
+
random_color=False,
|
135 |
+
bbox=None,
|
136 |
+
retinamask=True,
|
137 |
+
target_height=960,
|
138 |
+
target_width=960,
|
139 |
+
):
|
140 |
+
device = annotation.device
|
141 |
+
mask_sum = annotation.shape[0]
|
142 |
+
height = annotation.shape[1]
|
143 |
+
weight = annotation.shape[2]
|
144 |
+
areas = torch.sum(annotation, dim=(1, 2))
|
145 |
+
sorted_indices = torch.argsort(areas, descending=False)
|
146 |
+
annotation = annotation[sorted_indices]
|
147 |
+
# 找每个位置第一个非零值下标
|
148 |
+
index = (annotation != 0).to(torch.long).argmax(dim=0)
|
149 |
+
if random_color:
|
150 |
+
color = torch.rand((mask_sum, 1, 1, 3)).to(device)
|
151 |
+
else:
|
152 |
+
color = torch.ones((mask_sum, 1, 1, 3)).to(device) * torch.tensor(
|
153 |
+
[30 / 255, 144 / 255, 255 / 255]
|
154 |
+
).to(device)
|
155 |
+
transparency = torch.ones((mask_sum, 1, 1, 1)).to(device) * 0.6
|
156 |
+
visual = torch.cat([color, transparency], dim=-1)
|
157 |
+
mask_image = torch.unsqueeze(annotation, -1) * visual
|
158 |
+
# 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式
|
159 |
+
mask = torch.zeros((height, weight, 4)).to(device)
|
160 |
+
h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight))
|
161 |
+
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
162 |
+
# 使用向量化索引更新show的值
|
163 |
+
mask[h_indices, w_indices, :] = mask_image[indices]
|
164 |
+
mask_cpu = mask.cpu().numpy()
|
165 |
+
if bbox is not None:
|
166 |
+
x1, y1, x2, y2 = bbox
|
167 |
+
ax.add_patch(
|
168 |
+
plt.Rectangle(
|
169 |
+
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
|
170 |
+
)
|
171 |
+
)
|
172 |
+
if not retinamask:
|
173 |
+
mask_cpu = cv2.resize(
|
174 |
+
mask_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
|
175 |
+
)
|
176 |
+
return mask_cpu
|