File size: 7,188 Bytes
a2fd99a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import numpy as np
import plotly.graph_objects as go
import mne
from typing import Dict, Optional, Tuple
import plotly.express as px
import networkx as nx

class BrainMapper:
    def __init__(self):
        self.montage = mne.channels.make_standard_montage('standard_1020')
        self._initialize_coordinates()
    
    def _initialize_coordinates(self):
        """Initialize electrode coordinates from standard montage"""
        pos = self.montage.get_positions()
        self.coords = pos['ch_pos']
        
        # Extract x, y, z coordinates
        self.ch_names = list(self.coords.keys())
        self.x_coords = np.array([self.coords[ch][0] for ch in self.ch_names])
        self.y_coords = np.array([self.coords[ch][1] for ch in self.ch_names])
        self.z_coords = np.array([self.coords[ch][2] for ch in self.ch_names])
    
    def create_visualization(self, features: Dict, map_type: str = "2D Topographic") -> go.Figure:
        """Create brain visualization based on the specified type"""
        if map_type == "2D Topographic":
            return self._create_topographic_map(features)
        elif map_type == "3D Surface":
            return self._create_3d_surface(features)
        elif map_type == "Connectivity":
            return self._create_connectivity_map(features)
        else:
            raise ValueError(f"Unsupported map type: {map_type}")
    
    def _create_topographic_map(self, features: Dict) -> go.Figure:
        """Create 2D topographic map of brain activity"""
        # Extract band powers for visualization
        band_powers = features['band_powers']
        
        # Create figure with subplots for each frequency band
        fig = go.Figure()
        
        for band_name, powers in band_powers.items():
            # Create interpolated grid
            xi = np.linspace(min(self.x_coords), max(self.x_coords), 100)
            yi = np.linspace(min(self.y_coords), max(self.y_coords), 100)
            xi, yi = np.meshgrid(xi, yi)
            
            # Add contour plot for each band
            fig.add_trace(go.Contour(
                x=xi[0],
                y=yi[:, 0],
                z=powers.reshape(xi.shape),
                name=band_name,
                colorscale='Viridis',
                showscale=True,
                visible=(band_name == 'alpha')  # Show alpha band by default
            ))
            
            # Add scatter plot for electrode positions
            fig.add_trace(go.Scatter(
                x=self.x_coords,
                y=self.y_coords,
                mode='markers+text',
                text=self.ch_names,
                textposition="top center",
                name='Electrodes',
                marker=dict(size=10, color='black'),
                visible=(band_name == 'alpha')
            ))
        
        # Update layout
        fig.update_layout(
            title="Brain Activity Topographic Map",
            xaxis_title="X Position",
            yaxis_title="Y Position",
            showlegend=True,
            updatemenus=[{
                'buttons': [
                    {'label': band,
                     'method': 'update',
                     'args': [{'visible': [i == j for i in range(len(band_powers)*2) for _ in range(2)]}]}
                    for j, band in enumerate(band_powers.keys())
                ],
                'direction': 'down',
                'showactive': True,
            }]
        )
        
        return fig
    
    def _create_3d_surface(self, features: Dict) -> go.Figure:
        """Create 3D surface plot of brain activity"""
        # Create 3D surface using electrode positions
        fig = go.Figure()
        
        # Add surface plot
        fig.add_trace(go.Surface(
            x=self.x_coords.reshape(-1, 1),
            y=self.y_coords.reshape(-1, 1),
            z=features['statistics']['mean'].reshape(-1, 1),
            colorscale='Viridis',
            name='Brain Activity'
        ))
        
        # Add scatter plot for electrode positions
        fig.add_trace(go.Scatter3d(
            x=self.x_coords,
            y=self.y_coords,
            z=self.z_coords,
            mode='markers+text',
            text=self.ch_names,
            marker=dict(size=5, color='red'),
            name='Electrodes'
        ))
        
        # Update layout
        fig.update_layout(
            title="3D Brain Activity Surface",
            scene=dict(
                xaxis_title="X Position",
                yaxis_title="Y Position",
                zaxis_title="Activity Level",
                camera=dict(
                    up=dict(x=0, y=0, z=1),
                    center=dict(x=0, y=0, z=0),
                    eye=dict(x=1.5, y=1.5, z=1.5)
                )
            )
        )
        
        return fig
    
    def _create_connectivity_map(self, features: Dict) -> go.Figure:
        """Create brain connectivity visualization"""
        # Extract connectivity matrix
        connectivity = features['connectivity']['correlation']
        
        # Create graph
        G = nx.from_numpy_array(connectivity)
        pos = nx.spring_layout(G, k=1, iterations=50)
        
        # Create edge trace
        edge_x = []
        edge_y = []
        for edge in G.edges():
            x0, y0 = pos[edge[0]]
            x1, y1 = pos[edge[1]]
            edge_x.extend([x0, x1, None])
            edge_y.extend([y0, y1, None])
            
        edge_trace = go.Scatter(
            x=edge_x, y=edge_y,
            line=dict(width=0.5, color='#888'),
            hoverinfo='none',
            mode='lines')
        
        # Create node trace
        node_x = []
        node_y = []
        for node in G.nodes():
            x, y = pos[node]
            node_x.append(x)
            node_y.append(y)
            
        node_trace = go.Scatter(
            x=node_x, y=node_y,
            mode='markers+text',
            hoverinfo='text',
            text=self.ch_names,
            marker=dict(
                showscale=True,
                colorscale='YlOrRd',
                size=10,
                colorbar=dict(
                    thickness=15,
                    title='Node Connections',
                    xanchor='left',
                    titleside='right'
                )
            )
        )
        
        # Color node points by the number of connections
        node_adjacencies = []
        for node, adjacencies in enumerate(G.adjacency()):
            node_adjacencies.append(len(adjacencies[1]))
        node_trace.marker.color = node_adjacencies
        
        # Create figure
        fig = go.Figure(data=[edge_trace, node_trace],
                       layout=go.Layout(
                           title='Brain Connectivity Network',
                           showlegend=False,
                           hovermode='closest',
                           margin=dict(b=20,l=5,r=5,t=40),
                           xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
                           yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)
                       ))
        
        return fig