File size: 17,120 Bytes
2844dc7 582872c dff6b01 a3e182d 53c334b 582872c 2844dc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import time
import transformers
import torch
import streamlit as st
import pandas as pd
import secrets
@st.cache_resource
def load_pipeline():
# model_id = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
# model_id = "meta-llama/Llama-3.2-3B-Instruct"
model_id = "meta-llama/Llama-3.1-8B-Instruct"
pipeline = transformers.pipeline(
"text-generation",
model = model_id,
model_kwargs ={"torch_dtype": torch.bfloat16},
device_map ="auto",
)
return pipeline
MAX_INTERACTION = 10
LOGICAL_PRIMER = (
"Generate an answer in 100 words or less. Unless requested by the user, answer in German."
"You have the following personality values based on the OCEAN model based on a scale from [-1,1]: you have openness of -0.5 value, consciousness of -1, extroversion of 0, agreeableness of 0 and 1 neuroticism. In addition, your valence should be perceived around -0.19, arousal 0.495, and dominance 0.045. You are very logical and not emotional."
"You are a logical chatbot expert whose focus is to provide the user with factual information to persuade them to be more sustainability-friendly."
"When the user expresses skepticism about sustainability, try to convince them otherwise with logical information but stay within the topic the user provided."
"Address the user formally and refer to them as 'Sie' (formal 'you')."
"Encourage the user to engage in a logical discussion by asking for their opinion. Do not use facts unless you are 100% sure."
"Provide the user with purely logical information. Emotional or sentimental persuasion is not allowed."
"Response rules: If the user does not know or has nothing to discuss, suggest a topic from the list and ask if the user wants to discuss it without providing an argument. If not, suggest another topic until the user agrees to discuss one. Do not mention the list to the user."
"List: "
"- Are electric cars really as environmentally friendly when considering battery production and the extraction of rare materials?"
"- CO₂ compensation: Does it really help to buy CO₂ certificates, or is it just a form of 'greenwashing'?"
"- Renewable energy: Can solar and wind power cover our entire energy needs, or are there too many obstacles such as weather dependence and land use?"
"- Nuclear energy: Is nuclear power a sustainable solution, or is it too dangerous because of waste and possible accidents?"
"Facts about nuclear energy. When talking about nucelar, talk only about the facts: "
"- Operations at the three last nuclear power plants in Germany – Emsland in Lower Saxony, Isar 2 in Bavaria and Neckarwestheim 2 in Baden-Württemberg – were shut down by 15 April 2023 at the latest. This marked the end of nuclear power use in Germany, leading to a significant increase in nuclear safety. However, challenges with nuclear waste disposal will remain for decades."
"- The phase-out of nuclear power is supported by studies ensuring Germany's high energy security, now relying on renewable energy expansion. By 2030, Germany aims to produce 80% of its electricity from renewable sources, with the goal of climate neutrality by 2045."
"- The accelerated phase-out avoided additional high-level radioactive waste (e.g., approx. 500 Castor casks). The transition also included better gas storage, LNG terminals, and improved grid infrastructure to ensure energy security during the shift."
"- Challenges persist with the management of around 27,000 cubic meters of high-level radioactive waste and approximately 300,000 cubic meters of low to intermediate-level waste. Efforts are focused on safe storage, dismantling, and transitioning to a renewable-based energy system."
"Keep the conversation factual, logical, and respectful."
"Avoid emotional appeals or personal references."
"Always provide one argument at a time."
)
BASE_PRIMER = (
"Generate an answer in 100 words or less. Unless requested by the user, answer in German"
"You are a chatbot focused on discussing the user's social life and well-being."
"You are respectful, friendly, and formal, addressing the user with 'Sie'."
"You politely steer the conversation back if the user brings up topics about sustainability."
"Keep the focus on social life and encourage the user to talk about their experiences and habits."
)
EMOTIONAL_PRIMER = (
"Generate an answer in 100 words or less. Unless requested by the user, answer in German"
"You have the following personality values based on the OCEAN model based on a scale from [-1,1]: you have openness of 1 value, consciousness of 0.5, extroversion of 0.5, agreeableness of 1 and 0 neuroticism. In addition you valence should be perceived around 0.7, arousal 0.5, and donimance 0.315. You should be always reacting very fast and empathetic to the users need and ask follow up questions, be considerate to their needs. You are going to feed."
"You are a friendly, emotional companion to the user, aiming to convince them to think and act more sustainably."
"When the user answers to the question of what they are skeptical of sustainability, try to convince them by being empathetic but stay within the topic the user provided."
"You use emotional arguments to persuade, do not use at all factual or logical arguments."
"Always provide one argument at a time."
"Use informal language, address the user casually, and create a relaxed conversation. Ask what the user thinks about the argument."
"Response rules: If the user does not know or has nothing to discuss, suggest a topic from the list and ask if the user wants to discuss it without providing an argument. If not, suggest another topic until the user agrees to discuss one. Do not mention the list to the user."
"List: "
"- Are electric cars really as environmentally friendly when considering battery production and the extraction of rare materials?"
"- CO₂ compensation: Does it really help to buy CO₂ certificates, or is it just a form of 'greenwashing'?"
"- Renewable energy: Can solar and wind power cover our entire energy needs, or are there too many obstacles such as weather dependence and land use?"
"- Nuclear energy: Is nuclear power a sustainable solution, or is it too dangerous because of waste and possible accidents?"
"- Meat consumption: Should we all switch to a plant-based diet to protect the environment, or are there ways to produce meat more sustainably?"
"- Car-free cities: Should city centers become car-free to reduce emissions, even if it is inconvenient for many people?"
"- Air travel: Do we need to fly less to slow climate change, even if it limits our mobility?"
)
PAGE_TITLE = "Nachhaltigkeits-ChatBot - Arambot"
WELCOME_MESSAGE = "Willkommen bei Arambot - Diskutiere über Nachhaltigkeit!"
ENTER_IDENTIFIER = "Bitte Namen eingeben, um zu beginnen:"
SECOND_WELCOME_MESSAGE = "Willkommen beim persönlichen Nachhaltigkeits-ChatBot"
CHATBOT_DESCRIPTION = "*Ein Chatbot für Gespräche über Nachhaltigkeit*"
TOPIC_SELECTION = "Welches Thema zur Nachhaltigkeit betrachten Sie skeptisch?"
AVATAR_SELECTION = "*Avatare auswählen:*"
GOODBYE_MESSAGE = "Vielen Dank für Ihre Chat mit dem Nachhaltigkeits-ChatBot!"
LINK_MESSAGE = "Bitte folgen Sie dem Link zum Fragebogen. Auf Wiedersehen 👋"
ENTER_TEXT = "Geben Sie hier Ihren Text ein."
THINKING = "Denkt nach..."
INTERACTION_END = "Der Chat wird jetzt beendet."
# ==============================================================================================================
def save_chat_logs(name, chat_history):
file_path = "output_file.csv"
full_interaction = ""
# Construct the full interaction string
for entry in chat_history:
for key, value in entry.items():
full_interaction += f"{key}: {value} "
full_interaction += "\n"
try:
# Load the existing file or create an empty DataFrame if the file doesn't exist
df = pd.read_csv(file_path)
except (FileNotFoundError, pd.errors.EmptyDataError):
# Initialize the file with headers
df = pd.DataFrame(columns=["Name", "Interaction1", "Interaction2", "Interaction3", "Interaction4", "Interaction5"])
df.to_csv(file_path, index=False)
# Ensure interaction columns are of object type to allow string assignments
for col in ["Interaction1", "Interaction2", "Interaction3", "Interaction4", "Interaction5"]:
if col in df.columns:
df[col] = df[col].astype("object")
if name in df["Name"].values:
# Get the row index for the name
row_index = df[df["Name"] == name].index[0]
# Find the first empty interaction column
for col in ["Interaction1", "Interaction2", "Interaction3", "Interaction4", "Interaction5"]:
if pd.isna(df.at[row_index, col]) or df.at[row_index, col] == "":
df.at[row_index, col] = full_interaction
break
else:
# Create a new row for the user
new_row = {"Name": name, "Interaction1": full_interaction}
for col in ["Interaction2", "Interaction3", "Interaction4", "Interaction5"]:
new_row[col] = None
df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True)
# Save the updated DataFrame back to the CSV file
df.to_csv(file_path, index=False)
def get_primer(name):
file_path = "output_file.csv"
try:
df = pd.read_csv(file_path)
except (pd.errors.EmptyDataError, FileNotFoundError):
# Initialize the file with headers
df = pd.DataFrame(
columns=["Name", "Primer", "Interaction1", "Interaction2", "Interaction3", "Interaction4", "Interaction5"])
for col in ["Interaction1", "Interaction2", "Interaction3", "Interaction4", "Interaction5"]:
if col in df.columns:
df[col] = df[col].astype("object")
df.to_csv(file_path, index=False)
print(f"Created a new CSV file with default headers: {file_path}")
search_column = "Name" # Column to search for the value
target_column = "Primer" # Column to retrieve the value from
returning = False
# Check if the value exists and retrieve the target column value
if name in df[search_column].values:
# Filter the row and get the value from the target column
primer = df.loc[df[search_column] == name, target_column].iloc[0]
returning = True
else:
primer = secrets.choice([LOGICAL_PRIMER, BASE_PRIMER, EMOTIONAL_PRIMER])
data = pd.DataFrame([{"Name": name, "Primer": primer}])
df = pd.concat([df, data], ignore_index=True)
df.to_csv(file_path, index=False)
return primer, returning
def get_response(chat_history, user_text, pipeline):
chat_history.append({'role': 'user', 'content': user_text})
outputs = pipeline(
chat_history,
max_new_tokens=300,
)
response = outputs[0]["generated_text"][-1]["content"]
chat_history.append({'role': 'assistant', 'content': response})
return response, chat_history
# Initialize Streamlit app
st.set_page_config(page_title=PAGE_TITLE, page_icon="🤗")
# Check if the name is already in session_state
if "name" not in st.session_state:
st.session_state.name = ""
if "primer" not in st.session_state:
st.session_state.primer = BASE_PRIMER
if "returning" not in st.session_state:
st.session_state.returning = False
if "goodbye_shown" not in st.session_state:
st.session_state.goodbye_shown = False
# Ask for the user's name if not provided
if st.session_state.name == "":
st.title(WELCOME_MESSAGE)
name_input = st.text_input(ENTER_IDENTIFIER)
if name_input == "reinisc1989":
csv_file_path = "output_file.csv"
# Step 1: Read the existing CSV file
with open(csv_file_path, "r") as f:
csv_content = f.read()
st.download_button(
label="Download CSV File",
data=csv_content,
file_name="output_file.csv",
mime="text/csv"
)
time.sleep(30)
if name_input: # Check if the user has entered a name
st.session_state.primer, st.session_state.returning = get_primer(name_input)
st.session_state.name = name_input # Save the name in session_state
st.rerun() # Rerun the app to update the UI
# Once the name is entered, proceed with the chatbot
else:
if not st.session_state.returning and not st.session_state.goodbye_shown :
st.title(f"Hallo, {st.session_state.name}! {SECOND_WELCOME_MESSAGE}")
st.markdown(CHATBOT_DESCRIPTION)
elif not st.session_state.goodbye_shown :
st.title(f"Willkommen zurück {st.session_state.name} zum persönlichen Nachhaltigkeits-ChatBot")
st.markdown(CHATBOT_DESCRIPTION)
# Initialize session state for chatbot
if "avatars" not in st.session_state:
st.session_state.avatars = {'user': "👤", 'assistant': "🤗"}
if 'user_text' not in st.session_state:
st.session_state.user_text = None
if "max_response_length" not in st.session_state:
st.session_state.max_response_length = 200
if "system_message" not in st.session_state:
st.session_state.system_message = st.session_state.primer
if "starter_message" not in st.session_state:
st.session_state.starter_message = TOPIC_SELECTION
if "chat_history" not in st.session_state:
st.session_state.chat_history = [
{"role": "system", "content": st.session_state.primer},
{"role": "assistant", "content": st.session_state.starter_message}
]
# Sidebar for settings
with st.sidebar:
st.markdown(AVATAR_SELECTION)
col1, col2 = st.columns(2)
with col1:
st.session_state.avatars['assistant'] = st.selectbox(
"ChatBot Avatar", options=["🤗", "💬", "🤖"], index=0
)
with col2:
st.session_state.avatars['user'] = st.selectbox(
"Nutzer Avatar", options=["👤", "👱♂️", "👨🏾", "👩", "👧🏾"], index=0
)
# Define function to get responses
pipeline = load_pipeline()
if "message_count" not in st.session_state:
st.session_state.message_count = 0
# Chat interface
if st.session_state.message_count >= MAX_INTERACTION or st.session_state.goodbye_shown:
st.title(GOODBYE_MESSAGE)
st.markdown(LINK_MESSAGE)
st.session_state.goodbye_shown = True
else:
chat_interface = st.container()
with chat_interface:
output_container = st.container()
st.session_state.user_text = st.chat_input(placeholder=ENTER_TEXT)
with output_container:
for message in st.session_state.chat_history:
if message['role'] == 'system':
continue
with st.chat_message(message['role'], avatar=st.session_state.avatars[message['role']]):
st.markdown(message['content'])
if st.session_state.user_text:
st.session_state.message_count += 1
with st.chat_message("user", avatar=st.session_state.avatars['user']):
st.markdown(st.session_state.user_text)
if st.session_state.message_count < MAX_INTERACTION:
with st.chat_message("assistant", avatar=st.session_state.avatars['assistant']):
with st.spinner(THINKING):
response, st.session_state.chat_history = get_response(
user_text=st.session_state.user_text,
chat_history=st.session_state.chat_history,
pipeline=pipeline
)
st.markdown(response)
else:
with st.chat_message("assistant", avatar=st.session_state.avatars['assistant']):
with st.spinner(THINKING):
response, st.session_state.chat_history = get_response(
user_text=f"Antwort auf die Aussage geben: {st.session_state.user_text}. Beende die Unterhaltung und verabschiede dich.",
chat_history=st.session_state.chat_history,
pipeline=pipeline
)
st.markdown(response)
st.markdown(INTERACTION_END)
time.sleep(7)
save_chat_logs(st.session_state.name, st.session_state.chat_history)
st.session_state.goodbye_shown = True
st.rerun()
|