Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2024 Jaerin Lee | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
import concurrent.futures | |
import time | |
from typing import Any, Callable, List, Tuple, Union | |
from PIL import Image | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torch.cuda.amp as amp | |
import torchvision.transforms as T | |
import torchvision.transforms.functional as TF | |
def seed_everything(seed: int) -> None: | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = True | |
def get_cutoff(cutoff: float = None, scale: float = None) -> float: | |
if cutoff is not None: | |
return cutoff | |
if scale is not None and cutoff is None: | |
return 0.5 / scale | |
raise ValueError('Either one of `cutoff`, or `scale` should be specified.') | |
def get_scale(cutoff: float = None, scale: float = None) -> float: | |
if scale is not None: | |
return scale | |
if cutoff is not None and scale is None: | |
return 0.5 / cutoff | |
raise ValueError('Either one of `cutoff`, or `scale` should be specified.') | |
def filter_2d_by_kernel_1d(x: torch.Tensor, k: torch.Tensor) -> torch.Tensor: | |
assert len(k.shape) in (1,), 'Kernel size should be one of (1,).' | |
# assert len(k.shape) in (1, 2), 'Kernel size should be one of (1, 2).' | |
b, c, h, w = x.shape | |
ks = k.shape[-1] | |
k = k.view(1, 1, -1).repeat(c, 1, 1) | |
x = x.permute(0, 2, 1, 3) | |
x = x.reshape(b * h, c, w) | |
x = F.pad(x, (ks // 2, (ks - 1) // 2), mode='replicate') | |
x = F.conv1d(x, k, groups=c) | |
x = x.reshape(b, h, c, w).permute(0, 3, 2, 1).reshape(b * w, c, h) | |
x = F.pad(x, (ks // 2, (ks - 1) // 2), mode='replicate') | |
x = F.conv1d(x, k, groups=c) | |
x = x.reshape(b, w, c, h).permute(0, 2, 3, 1) | |
return x | |
def filter_2d_by_kernel_2d(x: torch.Tensor, k: torch.Tensor) -> torch.Tensor: | |
assert len(k.shape) in (2, 3), 'Kernel size should be one of (2, 3).' | |
x = F.pad(x, ( | |
k.shape[-2] // 2, (k.shape[-2] - 1) // 2, | |
k.shape[-1] // 2, (k.shape[-1] - 1) // 2, | |
), mode='replicate') | |
b, c, _, _ = x.shape | |
if len(k.shape) == 2 or (len(k.shape) == 3 and k.shape[0] == 1): | |
k = k.view(1, 1, *k.shape[-2:]).repeat(c, 1, 1, 1) | |
x = F.conv2d(x, k, groups=c) | |
elif len(k.shape) == 3: | |
assert k.shape[0] == b, \ | |
'The number of kernels should match the batch size.' | |
k = k.unsqueeze(1) | |
x = F.conv2d(x.permute(1, 0, 2, 3), k, groups=b).permute(1, 0, 2, 3) | |
return x | |
def filter_by_kernel( | |
x: torch.Tensor, | |
k: torch.Tensor, | |
is_batch: bool = False, | |
) -> torch.Tensor: | |
k_dim = len(k.shape) | |
if k_dim == 1 or k_dim == 2 and is_batch: | |
return filter_2d_by_kernel_1d(x, k) | |
elif k_dim == 2 or k_dim == 3 and is_batch: | |
return filter_2d_by_kernel_2d(x, k) | |
else: | |
raise ValueError('Kernel size should be one of (1, 2, 3).') | |
def gen_gauss_lowpass_filter_2d( | |
std: torch.Tensor, | |
window_size: int = None, | |
) -> torch.Tensor: | |
# Gaussian kernel size is odd in order to preserve the center. | |
if window_size is None: | |
window_size = ( | |
2 * int(np.ceil(3 * std.max().detach().cpu().numpy())) + 1) | |
y = torch.arange( | |
window_size, dtype=std.dtype, device=std.device | |
).view(-1, 1).repeat(1, window_size) | |
grid = torch.stack((y.t(), y), dim=-1) | |
grid -= 0.5 * (window_size - 1) # (W, W) | |
var = (std * std).unsqueeze(-1).unsqueeze(-1) | |
distsq = (grid * grid).sum(dim=-1).unsqueeze(0).repeat(*std.shape, 1, 1) | |
k = torch.exp(-0.5 * distsq / var) | |
k /= k.sum(dim=(-2, -1), keepdim=True) | |
return k | |
def gaussian_lowpass( | |
x: torch.Tensor, | |
std: Union[float, Tuple[float], torch.Tensor] = None, | |
cutoff: Union[float, torch.Tensor] = None, | |
scale: Union[float, torch.Tensor] = None, | |
) -> torch.Tensor: | |
if std is None: | |
cutoff = get_cutoff(cutoff, scale) | |
std = 0.5 / (np.pi * cutoff) | |
if isinstance(std, (float, int)): | |
std = (std, std) | |
if isinstance(std, torch.Tensor): | |
"""Using nn.functional.conv2d with Gaussian kernels built in runtime is | |
80% faster than transforms.functional.gaussian_blur for individual | |
items. | |
(in GPU); However, in CPU, the result is exactly opposite. But you | |
won't gonna run this on CPU, right? | |
""" | |
if len(list(s for s in std.shape if s != 1)) >= 2: | |
raise NotImplementedError( | |
'Anisotropic Gaussian filter is not currently available.') | |
# k.shape == (B, W, W). | |
k = gen_gauss_lowpass_filter_2d(std=std.view(-1)) | |
if k.shape[0] == 1: | |
return filter_by_kernel(x, k[0], False) | |
else: | |
return filter_by_kernel(x, k, True) | |
else: | |
# Gaussian kernel size is odd in order to preserve the center. | |
window_size = tuple(2 * int(np.ceil(3 * s)) + 1 for s in std) | |
return TF.gaussian_blur(x, window_size, std) | |
def blend( | |
fg: Union[torch.Tensor, Image.Image], | |
bg: Union[torch.Tensor, Image.Image], | |
mask: Union[torch.Tensor, Image.Image], | |
std: float = 0.0, | |
) -> Image.Image: | |
if not isinstance(fg, torch.Tensor): | |
fg = T.ToTensor()(fg) | |
if not isinstance(bg, torch.Tensor): | |
bg = T.ToTensor()(bg) | |
if not isinstance(mask, torch.Tensor): | |
mask = (T.ToTensor()(mask) < 0.5).float()[:1] | |
if std > 0: | |
mask = gaussian_lowpass(mask[None], std)[0].clip_(0, 1) | |
return T.ToPILImage()(fg * mask + bg * (1 - mask)) | |
def get_panorama_views( | |
panorama_height: int, | |
panorama_width: int, | |
window_size: int = 64, | |
) -> tuple[List[Tuple[int]], torch.Tensor]: | |
stride = window_size // 2 | |
is_horizontal = panorama_width > panorama_height | |
num_blocks_height = (panorama_height - window_size + stride - 1) // stride + 1 | |
num_blocks_width = (panorama_width - window_size + stride - 1) // stride + 1 | |
total_num_blocks = num_blocks_height * num_blocks_width | |
half_fwd = torch.linspace(0, 1, (window_size + 1) // 2) | |
half_rev = half_fwd.flip(0) | |
if window_size % 2 == 1: | |
half_rev = half_rev[1:] | |
c = torch.cat((half_fwd, half_rev)) | |
one = torch.ones_like(c) | |
f = c.clone() | |
f[:window_size // 2] = 1 | |
b = c.clone() | |
b[-(window_size // 2):] = 1 | |
h = [one] if num_blocks_height == 1 else [f] + [c] * (num_blocks_height - 2) + [b] | |
w = [one] if num_blocks_width == 1 else [f] + [c] * (num_blocks_width - 2) + [b] | |
views = [] | |
masks = torch.zeros(total_num_blocks, panorama_height, panorama_width) # (n, h, w) | |
for i in range(total_num_blocks): | |
hi, wi = i // num_blocks_width, i % num_blocks_width | |
h_start = hi * stride | |
h_end = min(h_start + window_size, panorama_height) | |
w_start = wi * stride | |
w_end = min(w_start + window_size, panorama_width) | |
views.append((h_start, h_end, w_start, w_end)) | |
h_width = h_end - h_start | |
w_width = w_end - w_start | |
masks[i, h_start:h_end, w_start:w_end] = h[hi][:h_width, None] * w[wi][None, :w_width] | |
# Sum of the mask weights at each pixel `masks.sum(dim=1)` must be unity. | |
return views, masks[None] # (1, n, h, w) | |
def shift_to_mask_bbox_center(im: torch.Tensor, mask: torch.Tensor, reverse: bool = False) -> List[int]: | |
h, w = mask.shape[-2:] | |
device = mask.device | |
mask = mask.reshape(-1, h, w) | |
# assert mask.shape[0] == im.shape[0] | |
h_occupied = mask.sum(dim=-2) > 0 | |
w_occupied = mask.sum(dim=-1) > 0 | |
l = torch.argmax(h_occupied * torch.arange(w, 0, -1).to(device), 1, keepdim=True).cpu() | |
r = torch.argmax(h_occupied * torch.arange(w).to(device), 1, keepdim=True).cpu() | |
t = torch.argmax(w_occupied * torch.arange(h, 0, -1).to(device), 1, keepdim=True).cpu() | |
b = torch.argmax(w_occupied * torch.arange(h).to(device), 1, keepdim=True).cpu() | |
tb = (t + b + 1) // 2 | |
lr = (l + r + 1) // 2 | |
shifts = (tb - (h // 2), lr - (w // 2)) | |
shifts = torch.cat(shifts, dim=1) # (p, 2) | |
if reverse: | |
shifts = shifts * -1 | |
return torch.stack([i.roll(shifts=s.tolist(), dims=(-2, -1)) for i, s in zip(im, shifts)], dim=0) | |
class Streamer: | |
def __init__(self, fn: Callable, ema_alpha: float = 0.9) -> None: | |
self.fn = fn | |
self.ema_alpha = ema_alpha | |
self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=1) | |
self.future = self.executor.submit(fn) | |
self.image = None | |
self.prev_exec_time = 0 | |
self.ema_exec_time = 0 | |
def throughput(self) -> float: | |
return 1.0 / self.ema_exec_time if self.ema_exec_time else float('inf') | |
def timed_fn(self) -> Any: | |
start = time.time() | |
res = self.fn() | |
end = time.time() | |
self.prev_exec_time = end - start | |
self.ema_exec_time = self.ema_exec_time * self.ema_alpha + self.prev_exec_time * (1 - self.ema_alpha) | |
return res | |
def __call__(self) -> Any: | |
if self.future.done() or self.image is None: | |
# get the result (the new image) and start a new task | |
image = self.future.result() | |
self.future = self.executor.submit(self.timed_fn) | |
self.image = image | |
return image | |
else: | |
# if self.fn() is not ready yet, use the previous image | |
# NOTE: This assumes that we have access to a previously generated image here. | |
# If there's no previous image (i.e., this is the first invocation), you could fall | |
# back to some default image or handle it differently based on your requirements. | |
return self.image |