Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,65 +5,30 @@ import os
|
|
5 |
import requests
|
6 |
import scipy.io.wavfile
|
7 |
import io
|
|
|
8 |
|
9 |
client = InferenceClient(
|
10 |
"meta-llama/Meta-Llama-3-8B-Instruct",
|
11 |
token=os.getenv('hf_token')
|
12 |
)
|
13 |
|
14 |
-
def respond(
|
15 |
-
message,
|
16 |
-
history: list[tuple[str, str]],
|
17 |
-
system_message,
|
18 |
-
max_tokens,
|
19 |
-
temperature,
|
20 |
-
top_p,
|
21 |
-
):
|
22 |
-
messages = [{"role": "system", "content": system_message}]
|
23 |
-
|
24 |
-
for val in history:
|
25 |
-
if val[0]:
|
26 |
-
messages.append({"role": "user", "content": val[0]})
|
27 |
-
if val[1]:
|
28 |
-
messages.append({"role": "assistant", "content": val[1]})
|
29 |
-
|
30 |
-
messages.append({"role": "user", "content": message})
|
31 |
-
|
32 |
-
response = ""
|
33 |
-
|
34 |
-
for message in client.chat_completion(
|
35 |
-
messages,
|
36 |
-
max_tokens=max_tokens,
|
37 |
-
stream=True,
|
38 |
-
temperature=temperature,
|
39 |
-
top_p=top_p,
|
40 |
-
):
|
41 |
-
token = message.choices[0].delta.content
|
42 |
-
|
43 |
-
response += token
|
44 |
-
yield response
|
45 |
|
46 |
def process_audio(audio_data):
|
47 |
if audio_data is None:
|
48 |
-
return "No audio provided"
|
49 |
-
|
50 |
-
print("audio_data:", audio_data) # 添加这行代码
|
51 |
|
52 |
# 检查 audio_data 是否是元组,并提取数据
|
53 |
if isinstance(audio_data, tuple):
|
54 |
sample_rate, data = audio_data
|
55 |
-
print("Sample rate:", sample_rate)
|
56 |
-
print("Data type:", type(data))
|
57 |
else:
|
58 |
-
return "Invalid audio data format"
|
59 |
-
|
60 |
|
61 |
# Convert the audio data to WAV format in memory
|
62 |
buf = io.BytesIO()
|
63 |
scipy.io.wavfile.write(buf, sample_rate, data)
|
64 |
wav_bytes = buf.getvalue()
|
65 |
buf.close()
|
66 |
-
|
67 |
API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large-v2"
|
68 |
headers = {"Authorization": f"Bearer {os.getenv('hf_token')}"}
|
69 |
|
@@ -74,13 +39,15 @@ def process_audio(audio_data):
|
|
74 |
# Call the API to process the audio
|
75 |
output = query(wav_bytes)
|
76 |
|
77 |
-
print(output)
|
78 |
|
79 |
# Check the API response
|
80 |
if 'text' in output:
|
81 |
-
|
|
|
82 |
else:
|
83 |
-
|
|
|
84 |
|
85 |
# 定义函数以禁用按钮并显示加载指示器
|
86 |
def disable_components():
|
@@ -94,42 +61,101 @@ def disable_components():
|
|
94 |
|
95 |
# 定义函数以启用按钮并隐藏加载指示器
|
96 |
def enable_components(recognized_text):
|
97 |
-
# 处理完成后,recognized_text 已经由 process_audio 更新
|
98 |
-
# 重新启用 process_button
|
99 |
process_button_update = gr.update(interactive=True)
|
100 |
# 隐藏加载动画
|
101 |
loading_animation_update = gr.update(visible=False)
|
102 |
return recognized_text, process_button_update, loading_animation_update
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
# 创建界面
|
106 |
def create_interface():
|
107 |
with gr.Blocks() as demo:
|
108 |
-
#
|
109 |
-
gr.Markdown("#
|
110 |
|
111 |
-
#
|
112 |
with gr.Row():
|
113 |
audio_input = gr.Audio(
|
114 |
sources="microphone",
|
115 |
-
type="numpy", #
|
116 |
-
label="
|
117 |
)
|
|
|
118 |
|
119 |
-
#
|
120 |
-
|
121 |
-
recognized_text = gr.Textbox(label="识别文本")
|
122 |
-
|
123 |
-
# 处理音频的按钮
|
124 |
-
process_button = gr.Button("处理音频")
|
125 |
|
126 |
-
#
|
127 |
loading_animation = gr.HTML(
|
128 |
value='<div style="text-align: center;"><span style="font-size: 18px;">ASR Model is running...</span></div>',
|
129 |
visible=False
|
130 |
)
|
131 |
-
|
132 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
process_button.click(
|
134 |
fn=disable_components,
|
135 |
inputs=[],
|
@@ -137,22 +163,14 @@ def create_interface():
|
|
137 |
).then(
|
138 |
fn=process_audio,
|
139 |
inputs=[audio_input],
|
140 |
-
outputs=recognized_text
|
141 |
).then(
|
142 |
fn=enable_components,
|
143 |
inputs=[recognized_text],
|
144 |
outputs=[recognized_text, process_button, loading_animation]
|
145 |
)
|
146 |
-
|
147 |
-
# Chatbot
|
148 |
-
chatbot = gr.ChatInterface(
|
149 |
-
fn=respond,
|
150 |
-
additional_inputs=[
|
151 |
-
gr.Textbox(value="You are a helpful chatbot that answers questions.", label="系统消息")
|
152 |
-
]
|
153 |
-
)
|
154 |
-
|
155 |
-
# 布局包含 Chatbot
|
156 |
with gr.Row():
|
157 |
chatbot_output = chatbot
|
158 |
|
@@ -162,4 +180,4 @@ def create_interface():
|
|
162 |
|
163 |
if __name__ == "__main__":
|
164 |
demo = create_interface()
|
165 |
-
demo.launch()
|
|
|
5 |
import requests
|
6 |
import scipy.io.wavfile
|
7 |
import io
|
8 |
+
import time
|
9 |
|
10 |
client = InferenceClient(
|
11 |
"meta-llama/Meta-Llama-3-8B-Instruct",
|
12 |
token=os.getenv('hf_token')
|
13 |
)
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def process_audio(audio_data):
|
17 |
if audio_data is None:
|
18 |
+
return "No audio provided.", ""
|
|
|
|
|
19 |
|
20 |
# 检查 audio_data 是否是元组,并提取数据
|
21 |
if isinstance(audio_data, tuple):
|
22 |
sample_rate, data = audio_data
|
|
|
|
|
23 |
else:
|
24 |
+
return "Invalid audio data format.", ""
|
|
|
25 |
|
26 |
# Convert the audio data to WAV format in memory
|
27 |
buf = io.BytesIO()
|
28 |
scipy.io.wavfile.write(buf, sample_rate, data)
|
29 |
wav_bytes = buf.getvalue()
|
30 |
buf.close()
|
31 |
+
|
32 |
API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large-v2"
|
33 |
headers = {"Authorization": f"Bearer {os.getenv('hf_token')}"}
|
34 |
|
|
|
39 |
# Call the API to process the audio
|
40 |
output = query(wav_bytes)
|
41 |
|
42 |
+
print(output) # Check output in console (logs in HF space)
|
43 |
|
44 |
# Check the API response
|
45 |
if 'text' in output:
|
46 |
+
recognized_text = output['text']
|
47 |
+
return recognized_text, recognized_text
|
48 |
else:
|
49 |
+
recognized_text = "The ASR module is still loading, please press the button again!"
|
50 |
+
return recognized_text, ""
|
51 |
|
52 |
# 定义函数以禁用按钮并显示加载指示器
|
53 |
def disable_components():
|
|
|
61 |
|
62 |
# 定义函数以启用按钮并隐藏加载指示器
|
63 |
def enable_components(recognized_text):
|
|
|
|
|
64 |
process_button_update = gr.update(interactive=True)
|
65 |
# 隐藏加载动画
|
66 |
loading_animation_update = gr.update(visible=False)
|
67 |
return recognized_text, process_button_update, loading_animation_update
|
68 |
|
69 |
+
llama_responded = 0
|
70 |
+
|
71 |
+
def respond(
|
72 |
+
message,
|
73 |
+
history: list[tuple[str, str]]
|
74 |
+
):
|
75 |
+
global llama_responded
|
76 |
+
system_message = "You are a helpful chatbot that answers questions. Give any answer within 50 words."
|
77 |
+
messages = [{"role": "system", "content": system_message}]
|
78 |
+
|
79 |
+
for val in history:
|
80 |
+
print(val[0])
|
81 |
+
if val[0] != None:
|
82 |
+
if val[0]:
|
83 |
+
messages.append({"role": "user", "content": val[0]})
|
84 |
+
if val[1]:
|
85 |
+
messages.append({"role": "assistant", "content": val[1]})
|
86 |
+
messages.append({"role": "user", "content": message})
|
87 |
+
|
88 |
+
response = ""
|
89 |
+
|
90 |
+
for message in client.chat_completion(
|
91 |
+
messages,
|
92 |
+
stream=True,
|
93 |
+
):
|
94 |
+
token = message.choices[0].delta.content
|
95 |
+
response += token
|
96 |
+
|
97 |
+
llama_responded = 1
|
98 |
+
return response #gr.Audio("/home/yxpeng/Projects/RAGHack/Exodia/voice_sample/trump1.wav")
|
99 |
+
|
100 |
+
def update_response_display():
|
101 |
+
while not llama_responded:
|
102 |
+
time.sleep(1)
|
103 |
+
|
104 |
+
def bot(history):
|
105 |
+
global llama_responded
|
106 |
+
#print(history)
|
107 |
+
history.append([None,gr.Audio("/home/yxpeng/Projects/RAGHack/Exodia/voice_sample/trump1.wav")])
|
108 |
+
llama_responded = 0
|
109 |
+
|
110 |
+
return history
|
111 |
|
|
|
112 |
def create_interface():
|
113 |
with gr.Blocks() as demo:
|
114 |
+
# Title
|
115 |
+
gr.Markdown("# Exodia AI Assistant")
|
116 |
|
117 |
+
# Audio input section
|
118 |
with gr.Row():
|
119 |
audio_input = gr.Audio(
|
120 |
sources="microphone",
|
121 |
+
type="numpy", # Get audio data and sample rate
|
122 |
+
label="Say Something..."
|
123 |
)
|
124 |
+
recognized_text = gr.Textbox(label="Recognized Text",interactive=False)
|
125 |
|
126 |
+
# Process audio button
|
127 |
+
process_button = gr.Button("Process Audio")
|
|
|
|
|
|
|
|
|
128 |
|
129 |
+
# Loading animation
|
130 |
loading_animation = gr.HTML(
|
131 |
value='<div style="text-align: center;"><span style="font-size: 18px;">ASR Model is running...</span></div>',
|
132 |
visible=False
|
133 |
)
|
134 |
+
|
135 |
+
chatbot_custom = gr.Chatbot(height=500) # Set height to 500 pixels
|
136 |
+
|
137 |
+
# Chat interface using the custom chatbot instance
|
138 |
+
chatbot = gr.ChatInterface(
|
139 |
+
fn=respond,
|
140 |
+
chatbot=chatbot_custom,
|
141 |
+
submit_btn="Start Chatting"
|
142 |
+
)
|
143 |
+
user_start =chatbot.textbox.submit(
|
144 |
+
fn=update_response_display,
|
145 |
+
inputs=[],
|
146 |
+
outputs=[],
|
147 |
+
)
|
148 |
+
|
149 |
+
# 在用户提交请求的时候
|
150 |
+
#user_start = chatbot.textbox.submit()
|
151 |
+
|
152 |
+
user_start.then(
|
153 |
+
fn=bot,
|
154 |
+
inputs=[chatbot_custom],
|
155 |
+
outputs=chatbot_custom, # 更新 response_display 的内容
|
156 |
+
)
|
157 |
+
|
158 |
+
# Associate audio processing function and update component states on click
|
159 |
process_button.click(
|
160 |
fn=disable_components,
|
161 |
inputs=[],
|
|
|
163 |
).then(
|
164 |
fn=process_audio,
|
165 |
inputs=[audio_input],
|
166 |
+
outputs=[recognized_text, chatbot.textbox]
|
167 |
).then(
|
168 |
fn=enable_components,
|
169 |
inputs=[recognized_text],
|
170 |
outputs=[recognized_text, process_button, loading_animation]
|
171 |
)
|
172 |
+
|
173 |
+
# Layout includes Chatbot
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
with gr.Row():
|
175 |
chatbot_output = chatbot
|
176 |
|
|
|
180 |
|
181 |
if __name__ == "__main__":
|
182 |
demo = create_interface()
|
183 |
+
demo.launch()
|