|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import os |
|
from rag import local_retriever, global_retriever |
|
from transformers import LlamaTokenizer |
|
|
|
""" |
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
""" |
|
|
|
|
|
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
search_strategy, |
|
top_p, |
|
): |
|
if search_strategy == "Global": |
|
return global_retriever(message, 2, "multiple paragraphs") |
|
else: |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
for message in client.chat_completion( |
|
messages, |
|
max_tokens=6192, |
|
stream=True, |
|
temperature=1.0, |
|
top_p=top_p, |
|
): |
|
token = message.choices[0].delta.content |
|
|
|
response += token |
|
|
|
return response |
|
|
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox( |
|
value="You are a medical assistant Chatbot. For any query that you don't know, you will say 'I don't know'. You will answer with the given information:", |
|
label="System message", |
|
), |
|
gr.Dropdown( |
|
choices=["Local", "Global"], value="Local", label="Select search strategy" |
|
), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|