Spaces:
Sleeping
Sleeping
made a ingest file
Browse files
ingest.py
CHANGED
@@ -8,4 +8,25 @@ service_context = ServiceContext.from_defaults(text_splitter=text_splitter)
|
|
8 |
|
9 |
index = VectorStoreIndex.from_documents(
|
10 |
documents, service_context=service_context
|
11 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
index = VectorStoreIndex.from_documents(
|
10 |
documents, service_context=service_context
|
11 |
+
)
|
12 |
+
|
13 |
+
from llama_index.query import QueryBuilder
|
14 |
+
|
15 |
+
# Define the query text
|
16 |
+
query_text = "How does the weather affect crop growth?"
|
17 |
+
|
18 |
+
# Preprocess the query text
|
19 |
+
query_builder = QueryBuilder(service_context)
|
20 |
+
query = query_builder.build_query(query_text)
|
21 |
+
|
22 |
+
# Search for similar documents or retrieve relevant information
|
23 |
+
results = index.search(query)
|
24 |
+
|
25 |
+
# Process the search results
|
26 |
+
for result in results:
|
27 |
+
document_id = result.document_id
|
28 |
+
score = result.score
|
29 |
+
document = documents[document_id]
|
30 |
+
# Process the retrieved document or display the relevant information
|
31 |
+
print(f"Document ID: {document_id}, Score: {score}")
|
32 |
+
print(f"Document Text: {document.text}")
|