import gradio as gr from langchain.document_loaders import OnlinePDFLoader from langchain.text_splitter import CharacterTextSplitter from langchain.prompts import PromptTemplate from langchain.llms import HuggingFaceHub # from langhchain.llms import openai from langchain.llms import OpenAI from langchain.vectorstores import Chroma from langchain.chains import RetrievalQA from langchain.document_loaders import PyPDFLoader from langchain.memory import VectorStoreRetrieverMemory from langchain.chains import RetrievalQAWithSourcesChain from langchain.memory import ConversationBufferMemory from langchain.embeddings import CohereEmbeddings from langchain.embeddings import HuggingFaceHubEmbeddings, OpenAIEmbeddings import dotenv import os from prompt.prompt_template import template dotenv.load_dotenv() text_splitter = CharacterTextSplitter( chunk_size=350, chunk_overlap=0 ) # llm= HuggingFaceHub( # repo_id="HuggingFaceH4/zephyr-7b-beta", # model_kwargs={ # "temperature":0.1, # "max_new_tokens":300 # } # ) # llm= OpenAI() from langchain.chat_models import ChatOpenAI llm= chat = ChatOpenAI( model_name='gpt-3.5-turbo-16k', # temperature = self.config.llm.temperature, # openai_api_key = self.config.llm.openai_api_key, # max_tokens=self.config.llm.max_tokens ) global qa COHERE_API_KEY = os.getenv("COHERE_API_KEY") embeddings = CohereEmbeddings( model="embed-english-v3.0", cohere_api_key=COHERE_API_KEY ) def loading_pdf(): return "Loading..." def pdf_changes(pdf_doc): embeddings = CohereEmbeddings( model="embed-english-light-v3.0", ) loader = PyPDFLoader(pdf_doc.name) documents = loader.load() texts = text_splitter.split_documents(documents) db = Chroma.from_documents(texts, embeddings) retriever = db.as_retriever() memory = ConversationBufferMemory( memory_key="chat_history", input_key="human_input" ) prompt = PromptTemplate( input_variables=[ "chat_history", "human_input", "context" ], template=template ) global qa prompt = PromptTemplate( input_variables=[ "history", "context", "question" ], template=template, ) memory = ConversationBufferMemory( memory_key="history", input_key="question" ) qa = RetrievalQAWithSourcesChain.from_chain_type( llm=llm, retriever=retriever, return_source_documents=True, verbose=True, chain_type_kwargs={ "verbose": True, "memory": memory, "prompt": prompt, "document_variable_name": "context" } ) return "Ready" def add_text(history, text): history = history + [(text, None)] return history, "" def bot(history): response = infer(history[-1][0],"") history[-1][1] = response['answer'] return history def infer(question, history) -> dict: query = question result = qa({"query": query, "history": history, "question": question}) return result css=""" #col-container {max-width: 700px; margin-left: auto; margin-right: auto;} """ title = """

Insurance Assistant 💼

Upload a .PDF from your computer, click the "Load PDF to LangChain" button,
when everything is ready, you can start asking questions about the pdf ;)

""" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.HTML(title) with gr.Column(): pdf_doc = gr.File() with gr.Row(): langchain_status = gr.Textbox( label="Status", placeholder="", interactive=False ) load_pdf = gr.Button("Load pdf to langchain") chatbot = gr.Chatbot( [], elem_id="chatbot" ) #.style(height=350) with gr.Row(): question = gr.Textbox( label="Question", placeholder="Type your question and hit Enter " ) load_pdf.click( loading_pdf, None, langchain_status, queue=False ) load_pdf.click( pdf_changes, pdf_doc, langchain_status, queue=False ) question.submit( add_text, [ chatbot, question ], [ chatbot, question ] ).then( bot, chatbot, chatbot ) demo.launch()