Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import boto3 | |
from botocore import UNSIGNED | |
from botocore.client import Config | |
import torch | |
from huggingface_hub import AsyncInferenceClient | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, pipeline | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.llms import HuggingFaceHub | |
from langchain.embeddings import HuggingFaceHubEmbeddings | |
from langchain.vectorstores import Chroma | |
from langchain.chains import RetrievalQA | |
from langchain.prompts import ChatPromptTemplate | |
from langchain.document_loaders import WebBaseLoader | |
from langchain.llms.huggingface_pipeline import HuggingFacePipeline | |
from langchain.llms import CTransformers | |
from transformers import AutoModel | |
from typing import Iterator | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=350, chunk_overlap=10) | |
embeddings = HuggingFaceHubEmbeddings() | |
model_id = "TheBloke/zephyr-7B-beta-GGUF" | |
# model_id = "HuggingFaceH4/zephyr-7b-beta" | |
# model_id = "meta-llama/Llama-2-7b-chat-hf" | |
# model = AutoModelForCausalLM.from_pretrained( | |
# model_id, | |
# device_map="auto", | |
# low_cpu_mem_usage=True | |
# ) | |
# print( "initalized model") | |
# tokenizer = AutoTokenizer.from_pretrained(model_id) | |
# model = AutoModelForCausalLM.from_pretrained(model_id) | |
# model = AutoModel.from_pretrained("TheBloke/zephyr-7B-beta-GGUF") | |
device = "cpu" | |
# llm_model = CTransformers( | |
# model="TheBloke/zephyr-7B-beta-GGUF", | |
# model_type="mistral", | |
# max_new_tokens=4384, | |
# temperature=0.2, | |
# repetition_penalty=1.13, | |
# device=device # Set the device explicitly during model initialization | |
# ) | |
# Load model directly | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta") | |
model = AutoModelForCausalLM.from_pretrained("HuggingFaceH4/zephyr-7b-beta") | |
# tokenizer = AutoTokenizer.from_pretrained(model_id) | |
# model = AutoModelForCausalLM.from_pretrained(model_id) | |
# pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10) | |
# hf = HuggingFacePipeline(pipeline=pipe) | |
print( "initalized model") | |
# tokenizer = AutoTokenizer.from_pretrained(model_id) | |
tokenizer.use_default_system_prompt = False | |
s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED)) | |
s3.download_file('rad-rag-demos', 'vectorstores/chroma.sqlite3', './chroma_db/chroma.sqlite3') | |
db = Chroma(persist_directory="./chroma_db", embedding_function=embeddings) | |
db.get() | |
retriever = db.as_retriever() | |
global qa | |
qa = RetrievalQA.from_chain_type(llm=llm_model, chain_type="stuff", retriever=retriever, return_source_documents=True) | |
def generate( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
system_prompt: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
) -> Iterator[str]: | |
conversation = [] | |
if system_prompt: | |
conversation.append({"role": "system", "content": system_prompt}) | |
for user, assistant in chat_history: | |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
repetition_penalty=repetition_penalty, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
def add_text(history, text): | |
history = history + [(text, None)] | |
return history, "" | |
def bot(history): | |
response = infer(history[-1][0]) | |
history[-1][1] = response['result'] | |
return history | |
def infer(question): | |
query = question | |
result = qa({"query": query}) | |
return result | |
css=""" | |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;} | |
""" | |
title = """ | |
<div style="text-align: center;max-width: 700px;"> | |
<h1>Chat with PDF</h1> | |
<p style="text-align: center;">Upload a .PDF from your computer, click the "Load PDF to LangChain" button, <br /> | |
when everything is ready, you can start asking questions about the pdf ;)</p> | |
</div> | |
""" | |
# with gr.Blocks(css=css) as demo: | |
# with gr.Column(elem_id="col-container"): | |
# gr.HTML(title) | |
# chatbot = gr.Chatbot([], elem_id="chatbot") | |
# with gr.Row(): | |
# question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ") | |
# question.submit(add_text, [chatbot, question], [chatbot, question]).then( | |
# bot, chatbot, chatbot | |
# ) | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Textbox(label="System prompt", lines=6), | |
gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=4.0, | |
step=0.1, | |
value=0.6, | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=0.9, | |
), | |
gr.Slider( | |
label="Top-k", | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=50, | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.2, | |
), | |
], | |
stop_btn=None, | |
examples=[ | |
["Hello there! How are you doing?"], | |
["Can you explain briefly to me what is the Python programming language?"], | |
["Explain the plot of Cinderella in a sentence."], | |
["How many hours does it take a man to eat a Helicopter?"], | |
["Write a 100-word article on 'Benefits of Open-Source in AI research'"], | |
], | |
) | |
with gr.Blocks(css="style.css") as demo: | |
# gr.Markdown(DESCRIPTION) | |
# gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") | |
chat_interface.render() | |
# gr.Markdown(LICENSE) | |
#x = 0 | |
if __name__ == "__main__": | |
demo.launch() |