YifengDing's picture
Add application and requirements file
a600446
raw
history blame
2.18 kB
from transformers import AutoTokenizer
import transformers
import os
import sys
import fire
import torch
import gradio as gr
def main(
base_model="ise-uiuc/Magicoder-S-DS-6.7B",
device="cpu",
port=8070,
):
tokenizer = AutoTokenizer.from_pretrained(base_model)
pipeline = transformers.pipeline(
"text-generation",
model=base_model,
torch_dtype=torch.float16,
device=device
)
def evaluate_magicoder(
instruction,
temperature=1,
max_new_tokens=2048,
):
MAGICODER_PROMPT = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.
@@ Instruction
{instruction}
@@ Response
"""
prompt = MAGICODER_PROMPT.format(instruction=instruction)
if temperature > 0:
sequences = pipeline(
prompt,
do_sample=True,
temperature=temperature,
max_new_tokens=max_new_tokens,
)
else:
sequences = pipeline(
prompt,
max_new_tokens=max_new_tokens,
)
for seq in sequences:
generated_text = seq['generated_text'].replace(prompt, "")
return generated_text
gr.Interface(
fn=evaluate_magicoder,
inputs=[
gr.components.Textbox(
lines=3, label="Instruction", placeholder="Anything you want to ask Magicoder ?"
),
gr.components.Slider(minimum=0, maximum=1, value=0, label="Temperature"),
gr.components.Slider(
minimum=1, maximum=2048, step=1, value=1024, label="Max tokens"
),
],
outputs=[
gr.components.Textbox(
lines=30,
label="Output",
)
],
title="Magicoder",
description="This is a LLM playground for Magicoder! Follow us on Github: https://github.com/ise-uiuc/magicoder and Huggingface: https://huggingface.co/ise-uiuc."
).queue().launch(share=True, server_port=port)
if __name__ == "__main__":
fire.Fire(main)