Spaces:
Running
Running
File size: 8,964 Bytes
cd6b52a 397529a cd6b52a 397529a cd6b52a 397529a cd6b52a d36d623 cd6b52a 0f710a2 cd6b52a 0f710a2 cd6b52a 0f710a2 cd6b52a 0f710a2 cd6b52a 0f710a2 cd6b52a 397529a cd6b52a b40b5fc cd6b52a 397529a cd6b52a 397529a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import copy
import json
import re
import tiktoken
import uuid
from curl_cffi import requests
from tclogger import logger
from constants.envs import PROXIES
from constants.headers import OPENAI_GET_HEADERS, OPENAI_POST_DATA
from constants.models import TOKEN_LIMIT_MAP, TOKEN_RESERVED
from messagers.message_outputer import OpenaiStreamOutputer
class OpenaiRequester:
def __init__(self):
self.init_requests_params()
def init_requests_params(self):
self.api_base = "https://chat.openai.com/backend-anon"
self.api_me = f"{self.api_base}/me"
self.api_models = f"{self.api_base}/models"
self.api_chat_requirements = f"{self.api_base}/sentinel/chat-requirements"
self.api_conversation = f"{self.api_base}/conversation"
self.uuid = str(uuid.uuid4())
self.requests_headers = copy.deepcopy(OPENAI_GET_HEADERS)
extra_headers = {
"Oai-Device-Id": self.uuid,
}
self.requests_headers.update(extra_headers)
def log_request(self, url, method="GET"):
logger.note(f"> {method}:", end=" ")
logger.mesg(f"{url}", end=" ")
def log_response(
self, res: requests.Response, stream=False, iter_lines=False, verbose=False
):
status_code = res.status_code
status_code_str = f"[{status_code}]"
if status_code == 200:
logger_func = logger.success
else:
logger_func = logger.warn
logger_func(status_code_str)
logger.enter_quiet(not verbose)
if stream:
if not iter_lines:
return
if not hasattr(self, "content_offset"):
self.content_offset = 0
for line in res.iter_lines():
line = line.decode("utf-8")
line = re.sub(r"^data:\s*", "", line)
if re.match(r"^\[DONE\]", line):
logger.success("\n[Finished]")
break
line = line.strip()
if line:
try:
data = json.loads(line, strict=False)
message_role = data["message"]["author"]["role"]
message_status = data["message"]["status"]
if (
message_role == "assistant"
and message_status == "in_progress"
):
content = data["message"]["content"]["parts"][0]
delta_content = content[self.content_offset :]
self.content_offset = len(content)
logger_func(delta_content, end="")
except Exception as e:
logger.warn(e)
else:
logger_func(res.json())
logger.exit_quiet(not verbose)
def get_models(self):
self.log_request(self.api_models)
res = requests.get(
self.api_models,
headers=self.requests_headers,
proxies=PROXIES,
timeout=10,
impersonate="chrome120",
)
self.log_response(res)
def auth(self):
self.log_request(self.api_chat_requirements, method="POST")
res = requests.post(
self.api_chat_requirements,
headers=self.requests_headers,
proxies=PROXIES,
timeout=10,
impersonate="chrome120",
)
self.chat_requirements_token = res.json()["token"]
self.log_response(res)
def transform_messages(self, messages: list[dict]):
def get_role(role):
if role in ["system", "user", "assistant"]:
return role
else:
return "system"
new_messages = [
{
"author": {"role": get_role(message["role"])},
"content": {"content_type": "text", "parts": [message["content"]]},
"metadata": {},
}
for message in messages
]
return new_messages
def chat_completions(self, messages: list[dict], verbose=False):
extra_headers = {
"Accept": "text/event-stream",
"Openai-Sentinel-Chat-Requirements-Token": self.chat_requirements_token,
}
requests_headers = copy.deepcopy(self.requests_headers)
requests_headers.update(extra_headers)
post_data = copy.deepcopy(OPENAI_POST_DATA)
extra_data = {
"messages": self.transform_messages(messages),
"websocket_request_id": str(uuid.uuid4()),
}
post_data.update(extra_data)
self.log_request(self.api_conversation, method="POST")
s = requests.Session()
res = s.post(
self.api_conversation,
headers=requests_headers,
json=post_data,
proxies=PROXIES,
timeout=10,
impersonate="chrome120",
stream=True,
)
self.log_response(res, stream=True, iter_lines=False)
return res
class OpenaiStreamer:
def __init__(self):
self.model = "gpt-3.5-turbo"
self.message_outputer = OpenaiStreamOutputer(
owned_by="openai", model="gpt-3.5-turbo"
)
self.tokenizer = tiktoken.get_encoding("cl100k_base")
def count_tokens(self, messages: list[dict]):
token_count = sum(
len(self.tokenizer.encode(message["content"])) for message in messages
)
logger.note(f"Prompt Token Count: {token_count}")
return token_count
def check_token_limit(self, messages: list[dict]):
token_limit = TOKEN_LIMIT_MAP[self.model]
token_count = self.count_tokens(messages)
token_redundancy = int(token_limit - TOKEN_RESERVED - token_count)
if token_redundancy <= 0:
raise ValueError(
f"Prompt exceeded token limit: {token_count} > {token_limit}"
)
return True
def chat_response(self, messages: list[dict], verbose=False):
self.check_token_limit(messages)
logger.enter_quiet(not verbose)
requester = OpenaiRequester()
requester.auth()
logger.exit_quiet(not verbose)
return requester.chat_completions(messages, verbose=verbose)
def chat_return_generator(self, stream_response: requests.Response, verbose=False):
content_offset = 0
is_finished = False
for line in stream_response.iter_lines():
line = line.decode("utf-8")
line = re.sub(r"^data:\s*", "", line)
line = line.strip()
if not line:
continue
if re.match(r"^\[DONE\]", line):
content_type = "Finished"
delta_content = ""
logger.success("\n[Finished]")
is_finished = True
else:
content_type = "Completions"
delta_content = ""
try:
data = json.loads(line, strict=False)
message_role = data["message"]["author"]["role"]
message_status = data["message"]["status"]
if message_role == "assistant" and message_status == "in_progress":
content = data["message"]["content"]["parts"][0]
if not len(content):
continue
delta_content = content[content_offset:]
content_offset = len(content)
if verbose:
logger.success(delta_content, end="")
else:
continue
except Exception as e:
logger.warn(e)
output = self.message_outputer.output(
content=delta_content, content_type=content_type
)
yield output
if not is_finished:
yield self.message_outputer.output(content="", content_type="Finished")
def chat_return_dict(self, stream_response: requests.Response):
final_output = self.message_outputer.default_data.copy()
final_output["choices"] = [
{
"index": 0,
"finish_reason": "stop",
"message": {"role": "assistant", "content": ""},
}
]
final_content = ""
for item in self.chat_return_generator(stream_response):
try:
data = json.loads(item)
delta = data["choices"][0]["delta"]
delta_content = delta.get("content", "")
if delta_content:
final_content += delta_content
except Exception as e:
logger.warn(e)
final_output["choices"][0]["message"]["content"] = final_content.strip()
return final_output
|