File size: 7,505 Bytes
10bfc0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import cv2
import matplotlib.pyplot as plt

from face_enhancer import load_face_enhancer_model

def validate_image(img):
    if not os.path.exists(img):
        raise ValueError(f'Image {img} does not exist')
    # check if img is a valid image file 
    if not os.path.isfile(img):
        raise ValueError(f'Image {img} is not a valid image file')
    # validate it to be jpg jpeg, png formats 
    if not img.lower().endswith(('.jpg', '.jpeg', '.png')):
        raise ValueError(f'Image {img} is not a valid image file')

def cpu_warning(device):
    if device == "cpu":
        print("Using CPU for face enhancer. If you have a GPU, you can set device='cuda' to speed up the process. You can also set enhance=False to skip the enhancement.")

def swap_n_show(img1_fn, img2_fn, app, swapper,
                plot_before=False, plot_after=True, enhance=False, enhancer='REAL-ESRGAN 2x',device="cpu"):
    
    validate_image(img1_fn)
    validate_image(img2_fn)
    
    img1 = cv2.imread(img1_fn)
    img2 = cv2.imread(img2_fn)
    
    if plot_before:
        fig, axs = plt.subplots(1, 2, figsize=(10, 5))
        axs[0].imshow(img1[:,:,::-1])
        axs[0].axis('off')
        axs[1].imshow(img2[:,:,::-1])
        axs[1].axis('off')
        plt.show()
    
    # Do the swap
    face1 = app.get(img1)[0]
    face2 = app.get(img2)[0]
    
    img1_ = img1.copy()
    img2_ = img2.copy()
    if plot_after:
        img1_ = swapper.get(img1_, face1, face2, paste_back=True)
        img2_ = swapper.get(img2_, face2, face1, paste_back=True)
        if enhance:
            cpu_warning(device)
            model, model_runner = load_face_enhancer_model(enhancer,device)
            img1_ = model_runner(img1_, model)
            img2_ = model_runner(img2_, model)
        fig, axs = plt.subplots(1, 2, figsize=(10, 5))
        axs[0].imshow(img1_[:,:,::-1])
        axs[0].axis('off')
        axs[1].imshow(img2_[:,:,::-1])
        axs[1].axis('off')
        plt.show()
    return img1_, img2_

def swap_n_show_same_img(img1_fn,
                         app, swapper,
                         plot_before=False,
                         plot_after=True, enhance=False, enhancer='REAL-ESRGAN 2x',device="cpu"):
    
    validate_image(img1_fn)
    img1 = cv2.imread(img1_fn)
    
    if plot_before:
        fig, ax = plt.subplots(1, 1, figsize=(10, 5))
        ax.imshow(img1[:,:,::-1])
        ax.axis('off')
        plt.show()
    
    # Do the swap
    faces = app.get(img1)
    face1, face2 = faces[0], faces[1]
    
    img1_ = img1.copy()
    if plot_after:
        img1_ = swapper.get(img1_, face1, face2, paste_back=True)
        img1_ = swapper.get(img1_, face2, face1, paste_back=True)
        if enhance:
            cpu_warning(device)
            model, model_runner = load_face_enhancer_model(enhancer,device)
            img1_ = model_runner(img1_, model)
        fig, ax = plt.subplots(1, 1, figsize=(10, 5))
        ax.imshow(img1_[:,:,::-1])
        ax.axis('off')
        plt.show()
    return img1_

def swap_face_single(img1_fn, img2_fn, app, swapper,
             plot_before=False, plot_after=True, enhance=False, enhancer='REAL-ESRGAN 2x',device="cpu"):
    
    validate_image(img1_fn)
    validate_image(img2_fn)
    
    img1 = cv2.imread(img1_fn)
    img2 = cv2.imread(img2_fn)
    
    if plot_before:
        axs = plt.subplots(1, 2, figsize=(10, 5))
        axs[0].imshow(img1[:,:,::-1])
        axs[0].axis('off')
        axs[1].imshow(img2[:,:,::-1])
        axs[1].axis('off')
        plt.show()
    
    # Do the swap
    face1 = app.get(img1)[0]
    face2 = app.get(img2)[0]
    
    img1_ = img1.copy()
    if plot_after:
        img1_ = swapper.get(img1_, face1, face2, paste_back=True)
        if enhance:
            cpu_warning(device)
            model, model_runner = load_face_enhancer_model(enhancer,device)
            img1_ = model_runner(img1_, model)
        # Save the image
        output_fn = os.path.join('outputs', os.path.basename(img1_fn))
        cv2.imwrite(output_fn, img1_)
        print(f'Image saved to {output_fn}')
    return img1_
def fine_face_swap(img1_fn, img2_fn, app, swapper,enhance=False, enhancer='REAL-ESRGAN 2x',device="cpu"):
    img1 = cv2.imread(img1_fn)
    facesimg1 = app.get(img1)
    total_faces_img1 = len(facesimg1)
    if total_faces_img1 > 1:
        print(f'{total_faces_img1} faces detected')
        fig, axs = plt.subplots(1, total_faces_img1, figsize=(12, 5))
        for i, face in enumerate(facesimg1):
            bbox = face['bbox']
            bbox = [int(b) for b in bbox]
            axs[i].imshow(img1[bbox[1]:bbox[3],bbox[0]:bbox[2],::-1])
            axs[i].axis('off')
            axs[i].set_title(f'Face {i+1}')
        plt.suptitle('Select a face to swap')
        plt.show()   
    else:
        print(f'{total_faces_img1} face detected')
        bbox = facesimg1[0]['bbox']
        bbox = [int(b) for b in bbox]
        plt.imshow(img1[bbox[1]:bbox[3],bbox[0]:bbox[2],::-1])
        plt.axis('off')
        plt.title('Face 1')
        plt.show()
        
    # Select a face from img1
    face_idximg1 = int(input(f'Enter face number (1-{total_faces_img1}): '))
    if face_idximg1 < 1 or face_idximg1 > total_faces_img1:
        raise ValueError(f'Invalid face number {face_idximg1}')
    face = facesimg1[face_idximg1-1]
    bbox = face['bbox']
    bbox = [int(b) for b in bbox]
    face_img = img1[bbox[1]:bbox[3],bbox[0]:bbox[2],::-1]
    plt.imshow(face_img)
    plt.axis('off')
    plt.title(f'Face {face_idximg1}')
    plt.suptitle('Selected face')
    plt.show()
    
    img2 = cv2.imread(img2_fn)
    facesimg2 = app.get(img2)
    total_faces_img2 = len(facesimg2)
    if total_faces_img2 > 1:
        print(f'{total_faces_img2} faces detected')
        fig, axs = plt.subplots(1, total_faces_img2, figsize=(12, 5))
        for i, face in enumerate(facesimg2):
            bbox = face['bbox']
            bbox = [int(b) for b in bbox]
            axs[i].imshow(img2[bbox[1]:bbox[3],bbox[0]:bbox[2],::-1])
            axs[i].axis('off')
            axs[i].set_title(f'Face {i+1}')
        plt.suptitle('Select a face to swap')
        plt.show()
    else:
        print(f'{total_faces_img2} face detected')
        bbox = facesimg2[0]['bbox']
        bbox = [int(b) for b in bbox]
        plt.imshow(img2[bbox[1]:bbox[3],bbox[0]:bbox[2],::-1])
        plt.axis('off')
        plt.title('Face 1')
        plt.show()
        
    # Select a face from img2
    face_idximg2 = int(input(f'Enter face number (1-{total_faces_img2}): '))
    if face_idximg2 < 1 or face_idximg2 > total_faces_img2:
        raise ValueError(f'Invalid face number {face_idximg2}')
    face = facesimg2[face_idximg2-1]
    bbox = face['bbox']
    bbox = [int(b) for b in bbox]
    face_img = img2[bbox[1]:bbox[3],bbox[0]:bbox[2],::-1]
    plt.imshow(face_img)
    plt.axis('off')
    plt.title(f'Face {face_idximg2}')
    plt.suptitle('Selected face')
    plt.show()
    
    # source face
    face1 = app.get(img1)[face_idximg1-1]
    face2 = app.get(img2)[face_idximg2-1]
    
    img1_ = img1.copy()
    img1_ = swapper.get(img1_, face1, face2, paste_back=True)
    if enhance:
        cpu_warning(device)
        model, model_runner = load_face_enhancer_model(enhancer,device)
        img1_ = model_runner(img1_, model)
    # Save the image
    output_fn = os.path.join('outputs', os.path.basename(img1_fn))
    cv2.imwrite(output_fn, img1_)
    print(f'Image saved to {output_fn}')
    return img1_