ishworrsubedii
commited on
Commit
•
875a318
1
Parent(s):
f04a4e9
add: body classification
Browse files
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
import os
|
5 |
+
import time
|
6 |
+
from transformers import ResNetForImageClassification, AutoImageProcessor
|
7 |
+
|
8 |
+
# Load model and processor
|
9 |
+
processor = AutoImageProcessor.from_pretrained("glazzova/body_type")
|
10 |
+
model = ResNetForImageClassification.from_pretrained("glazzova/body_type")
|
11 |
+
|
12 |
+
# Load example images from the "template" folder
|
13 |
+
example_images = [
|
14 |
+
os.path.join("template", x) for x in os.listdir("template") if x.lower().endswith((".png", ".jpg", ".jpeg"))
|
15 |
+
]
|
16 |
+
|
17 |
+
# Define the classification function
|
18 |
+
def body_classification(image):
|
19 |
+
start_time = time.time() # Record start time
|
20 |
+
inputs = processor(image, return_tensors="pt") # Process the image
|
21 |
+
|
22 |
+
# Get predictions
|
23 |
+
with torch.no_grad():
|
24 |
+
logits = model(**inputs).logits
|
25 |
+
|
26 |
+
predicted_label = logits.argmax(-1).item()
|
27 |
+
label = model.config.id2label[predicted_label]
|
28 |
+
elapsed_time = time.time() - start_time # Calculate elapsed time
|
29 |
+
|
30 |
+
return label, f"{elapsed_time:.2f} seconds"
|
31 |
+
|
32 |
+
# Create the Gradio interface
|
33 |
+
with gr.Blocks() as demo:
|
34 |
+
gr.Markdown("# Body Type Classifier")
|
35 |
+
gr.Markdown(
|
36 |
+
"""
|
37 |
+
Upload an image or use the example images to predict the body type.
|
38 |
+
The app uses a pre-trained ResNet model fine-tuned for body type classification.
|
39 |
+
|
40 |
+
**by Ishwor Subedi**
|
41 |
+
GitHub: [@ishworrsubedii](https://github.com/ishworrsubedii)
|
42 |
+
"""
|
43 |
+
)
|
44 |
+
|
45 |
+
with gr.Row():
|
46 |
+
with gr.Column():
|
47 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
48 |
+
with gr.Column():
|
49 |
+
label_output = gr.Textbox(label="Predicted Body Type")
|
50 |
+
time_output = gr.Textbox(label="Processing Time (s)")
|
51 |
+
|
52 |
+
classify_button = gr.Button("Classify")
|
53 |
+
classify_button.click(body_classification, inputs=image_input, outputs=[label_output, time_output])
|
54 |
+
|
55 |
+
gr.Markdown("### Example Images")
|
56 |
+
# Add example images as inputs
|
57 |
+
gr.Examples(examples=example_images, inputs=image_input, label="Template Images")
|
58 |
+
|
59 |
+
# Run the app
|
60 |
+
if __name__ == "__main__":
|
61 |
+
demo.launch(debug=True)
|