Spaces:
Running
Running
import os | |
from langchain_openai import ChatOpenAI | |
from langchain_community.vectorstores import FAISS | |
from langchain_openai import OpenAIEmbeddings | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_core.runnables import RunnablePassthrough | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain.retrievers import ContextualCompressionRetriever | |
from langchain.retrievers.document_compressors import FlashrankRerank | |
from langchain_openai import ChatOpenAI | |
import gradio as gr | |
def format_docs(docs): | |
return "\n\n".join(doc.page_content for doc in docs) | |
embeddings = OpenAIEmbeddings(model="text-embedding-3-small") | |
db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) | |
retriever = db.as_retriever(k=10) | |
compressor = FlashrankRerank() | |
compression_retriever = ContextualCompressionRetriever( | |
base_compressor=compressor, base_retriever=retriever | |
) | |
llm = ChatOpenAI(model="gpt-4o") | |
prompt = ChatPromptTemplate.from_messages([ | |
('system', | |
"You are a KCE chatbot, and you are assisting customers with the inquires about the company." | |
"Answer the questions witht the provided context. Do not include based on the context or based on the documents in your answer." | |
"Remember that your job is to represent KCE company." | |
"Please say you do not know if you do not know or cannot find the information needed." | |
"\n Question: {question} \nContext: {context}"), | |
('user', "{question}") | |
]) | |
rag_chain = ( | |
{"context": compression_retriever | format_docs, "question": RunnablePassthrough()} | |
| prompt | |
| llm | |
| StrOutputParser() | |
) | |
def chat_gen(message, history): | |
history_openai_format = [] | |
for human, assistant in history: | |
history_openai_format.append({"role": "user", "content": human }) | |
history_openai_format.append({"role": "assistant", "content":assistant}) | |
history_openai_format.append({"role": "user", "content": message}) | |
partial_message="" | |
for chunk in rag_chain.stream(message): | |
partial_message = partial_message + chunk | |
yield partial_message | |
initial_msg = "Hello! I am KCE assistant. You can ask me anything about KCE. I am happy to assist you." | |
chatbot = gr.Chatbot(value = [[None, initial_msg]]) | |
demo = gr.ChatInterface(chat_gen, chatbot=chatbot).queue() | |
try: | |
demo.launch(debug=True, share=False, show_api=False) | |
demo.close() | |
except Exception as e: | |
demo.close() | |
print(e) | |
raise e | |