ismaelfaro commited on
Commit
6f50bd9
1 Parent(s): f45a0d6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +253 -8
app.py CHANGED
@@ -1,16 +1,261 @@
1
- import gradio as gr
 
 
 
2
  import os
 
 
 
 
 
 
 
 
3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
- def video_identity(video):
6
- return video
 
 
 
 
 
 
7
 
 
 
 
 
 
 
 
 
8
 
9
- demo = gr.Interface(video_identity,
10
- gr.Video(),
11
- "playable_video",
12
- cache_examples=True)
 
 
13
 
14
  if __name__ == "__main__":
15
- demo.launch()
16
 
 
1
+ #create a Streamlit app using info from image_demo.py
2
+ import cv2
3
+ import time
4
+ import argparse
5
  import os
6
+ import torch
7
+ import posenet
8
+ import tempfile
9
+ from posenet.utils import *
10
+ import streamlit as st
11
+ from posenet.decode_multi import *
12
+ from visualizers import *
13
+ from ground_truth_dataloop import *
14
 
15
+ import cv2
16
+ import time
17
+ import argparse
18
+ import os
19
+ import torch
20
+ import posenet
21
+ import streamlit as st
22
+ from posenet.decode_multi import *
23
+ from visualizers import *
24
+ from ground_truth_dataloop import *
25
+
26
+ st.title('PoseNet Image Analyzer')
27
+
28
+ def process_frame(frame, scale_factor, output_stride):
29
+ input_image, draw_image, output_scale = process_input(frame, scale_factor=scale_factor, output_stride=output_stride)
30
+ return input_image, draw_image, output_scale
31
+
32
+ @st.cache_data()
33
+
34
+ def load_model(model):
35
+ model = posenet.load_model(model)
36
+ model = model.cuda()
37
+ return model
38
+
39
+ def main():
40
+ MAX_FILE_SIZE = 20 * 1024 * 1024 # 20 MB
41
+
42
+ model_number = st.sidebar.selectbox('Model', [101, 100, 75, 50])
43
+ scale_factor = 1.0
44
+ output_stride = st.sidebar.selectbox('Output Stride', [8, 16, 32, 64])
45
+ min_pose_score = st.sidebar.number_input("Minimum Pose Score", min_value=0.000, max_value=1.000, value=0.10, step=0.001)
46
+ st.sidebar.markdown(f'<p style="color:grey; font-size: 12px">The current number is {min_pose_score:.3f}</p>', unsafe_allow_html=True)
47
+
48
+ min_part_score = st.sidebar.number_input("Minimum Part Score", min_value=0.000, max_value=1.000, value=0.010, step=0.001)
49
+ st.sidebar.markdown(f'<p style="color:grey; font-size:12px">The current number is {min_part_score:.3f}</p>', unsafe_allow_html=True)
50
+
51
+ model = load_model(model_number)
52
+ output_stride = model.output_stride
53
+ output_dir = st.sidebar.text_input('Output Directory', './output')
54
+
55
+ option = st.selectbox('Choose an option', ['Upload Image', 'Upload Video', 'Try existing image'])
56
+
57
+ if option == 'Upload Video':
58
+ video_display_mode = st.selectbox("Video Display Mode", ['Frame by Frame', 'Entire Video'])
59
+ uploaded_video = st.file_uploader("Upload a video (mp4, mov, avi)", type=['mp4', 'mov', 'avi'])
60
+
61
+ if uploaded_video is not None:
62
+ tfile = tempfile.NamedTemporaryFile(delete=False)
63
+ tfile.write(uploaded_video.read())
64
+
65
+ vidcap = cv2.VideoCapture(tfile.name)
66
+ success, image = vidcap.read()
67
+ frames = []
68
+ frame_count = 0
69
+
70
+ while success:
71
+ input_image, draw_image, output_scale = process_frame(image, scale_factor, output_stride)
72
+ pose_scores, keypoint_scores, keypoint_coords = run_model(input_image, model, output_stride, output_scale)
73
+
74
+ result_image = posenet.draw_skel_and_kp(
75
+ draw_image, pose_scores, keypoint_scores, keypoint_coords,
76
+ min_pose_score=min_pose_score, min_part_score=min_part_score)
77
+
78
+ result_image = cv2.cvtColor(result_image, cv2.COLOR_BGR2RGB)
79
+ # result_image = print_frame(draw_image, pose_scores, keypoint_scores, keypoint_coords, output_dir, min_part_score=min_part_score, min_pose_score=min_pose_score)
80
+
81
+ if result_image is not None:
82
+ frames.append(result_image)
83
+ success, image = vidcap.read()
84
+ frame_count += 1
85
+
86
+ if video_display_mode == 'Frame by Frame':
87
+ st.image(result_image, caption=f'Frame {frame_count}', use_column_width=True)
88
+
89
+ # Progress bar
90
+ progress_bar = st.progress(0)
91
+
92
+ # Write the output video
93
+ output_file = 'output.mp4'
94
+ height, width, layers = frames[0].shape
95
+ size = (width,height)
96
+
97
+ output_file_path = os.path.join(output_dir, output_file)
98
+ out = cv2.VideoWriter(output_file_path, cv2.VideoWriter_fourcc(*'mp4v'), 15, size)
99
+
100
+ for i in range(len(frames)):
101
+ progress_percentage = i / len(frames)
102
+ progress_bar.progress(progress_percentage)
103
+ out.write(cv2.cvtColor(frames[i], cv2.COLOR_RGB2BGR))
104
+
105
+ out.release()
106
+
107
+
108
+ # Display the processed video
109
+ if video_display_mode == 'Entire Video':
110
+ with open(output_file_path, "rb") as file:
111
+ bytes_data = file.read()
112
+
113
+ st.download_button(
114
+ label="Download video",
115
+ data=bytes_data,
116
+ file_name=output_file,
117
+ mime="video/mp4",
118
+ )
119
+
120
+ # video_file = open(output_file_path, 'rb')
121
+ # st.write(f"Output file path: {output_file_path}")
122
+ # video_bytes = video_file.read()
123
+ # st.video(video_bytes)
124
+
125
+ # try:
126
+ # st.video(bytes_data, format="video/mp4", start_time=0)
127
+ # # st.write(f"Output file path: {output_file_path}")
128
+ # # st.video('./output/output.mp4', format="video/mp4", start_time=0)
129
+
130
+ # except Exception as e:
131
+ # st.write("Error: ", str(e))
132
+
133
+ if frames:
134
+ frame_idx = st.slider('Choose a frame', 0, len(frames) - 1, 0)
135
+ input_image, draw_image, output_scale = process_frame(frames[frame_idx], scale_factor, output_stride)
136
+ pose_scores, keypoint_scores, keypoint_coords = run_model(input_image, model, output_stride, output_scale)
137
+
138
+ pose_data = {
139
+ 'pose_scores': pose_scores.tolist(),
140
+ 'keypoint_scores': keypoint_scores.tolist(),
141
+ 'keypoint_coords': keypoint_coords.tolist()
142
+ }
143
+
144
+ st.image(draw_image, caption=f'Frame {frame_idx + 1}', use_column_width=True)
145
+ st.write(pose_data)
146
+
147
+ progress_bar.progress(1.0)
148
+
149
+
150
+ elif option == 'Upload Image':
151
+ image_file = st.file_uploader("Upload Image (Max 10MB)", type=['png', 'jpg', 'jpeg'])
152
+
153
+ if image_file is not None:
154
+ if image_file.size > MAX_FILE_SIZE:
155
+ st.error("File size exceeds the 10MB limit. Please upload a smaller file.")
156
+ file_bytes = np.asarray(bytearray(image_file.read()), dtype=np.uint8)
157
+ input_image = cv2.imdecode(file_bytes, 1)
158
+ filename = image_file.name
159
+ # Crop the image here as needed
160
+ # input_image = input_image[y:y+h, x:x+w]
161
+
162
+ input_image, source_image, output_scale = process_input(
163
+ input_image, scale_factor, output_stride)
164
+
165
+ pose_scores, keypoint_scores, keypoint_coords = run_model(input_image, model, output_stride, output_scale)
166
+ print_frame(source_image, pose_scores, keypoint_scores, keypoint_coords, output_dir, filename=filename, min_part_score=min_part_score, min_pose_score=min_pose_score)
167
+ else:
168
+ st.sidebar.warning("Please upload an image.")
169
+
170
+
171
+
172
+ elif option == 'Try existing image':
173
+ image_dir = st.sidebar.text_input('Image Directory', './images_train')
174
+
175
+ if output_dir:
176
+ if not os.path.exists(output_dir):
177
+ os.makedirs(output_dir)
178
+
179
+ filenames = [f.path for f in os.scandir(image_dir) if f.is_file() and f.path.endswith(('.png', '.jpg'))]
180
+
181
+ if filenames:
182
+ selected_image = st.sidebar.selectbox('Choose an image', filenames)
183
+
184
+ input_image, draw_image, output_scale = posenet.read_imgfile(
185
+ selected_image, scale_factor=scale_factor, output_stride=output_stride)
186
+
187
+ filename = os.path.basename(selected_image)
188
+ result_image, pose_scores, keypoint_scores, keypoint_coords = run_model(input_image, draw_image, model, output_stride, output_scale)
189
+ print_frame(result_image, pose_scores, keypoint_scores, keypoint_coords, output_dir, filename=selected_image, min_part_score=min_part_score, min_pose_score=min_pose_score)
190
+
191
+
192
+ else:
193
+ st.sidebar.warning("No images found in directory.")
194
+
195
+ #same as utils.py _process_input
196
+ def process_input(source_img, scale_factor=1.0, output_stride=16):
197
+ target_width, target_height = posenet.valid_resolution(
198
+ source_img.shape[1] * scale_factor, source_img.shape[0] * scale_factor, output_stride=output_stride)
199
+ scale = np.array([source_img.shape[0] / target_height, source_img.shape[1] / target_width])
200
+ input_img = cv2.resize(source_img, (target_width, target_height), interpolation=cv2.INTER_LINEAR)
201
+ input_img = cv2.cvtColor(input_img, cv2.COLOR_BGR2RGB).astype(np.float32)
202
+ input_img = input_img * (2.0 / 255.0) - 1.0
203
+ input_img = input_img.transpose((2, 0, 1)).reshape(1, 3, target_height, target_width)
204
+ return input_img, source_img, scale
205
+
206
+ def run_model(input_image, model, output_stride, output_scale):
207
+
208
+ with torch.no_grad():
209
+ input_image = torch.Tensor(input_image).cuda()
210
+
211
+ heatmaps_result, offsets_result, displacement_fwd_result, displacement_bwd_result = model(input_image)
212
+
213
+ # st.text("model heatmaps_result shape: {}".format(heatmaps_result.shape))
214
+ # st.text("model offsets_result shape: {}".format(offsets_result.shape))
215
+
216
+ pose_scores, keypoint_scores, keypoint_coords, pose_offsets = posenet.decode_multi.decode_multiple_poses(
217
+ heatmaps_result.squeeze(0),
218
+ offsets_result.squeeze(0),
219
+ displacement_fwd_result.squeeze(0),
220
+ displacement_bwd_result.squeeze(0),
221
+ output_stride=output_stride,
222
+ max_pose_detections=10,
223
+ min_pose_score=0.0)
224
+
225
+ # st.text("decoded pose_scores shape: {}".format(pose_scores.shape))
226
+ # st.text("decoded pose_offsets shape: {}".format(pose_offsets.shape))
227
+
228
+ keypoint_coords *= output_scale
229
+
230
+ # Convert BGR to RGB
231
+
232
+ return pose_scores, keypoint_scores, keypoint_coords
233
 
234
+ def print_frame(draw_image, pose_scores, keypoint_scores, keypoint_coords, output_dir, filename=None, min_part_score=0.01, min_pose_score=0.1):
235
+ if output_dir:
236
+
237
+ draw_image = posenet.draw_skel_and_kp(
238
+ draw_image, pose_scores, keypoint_scores, keypoint_coords,
239
+ min_pose_score=min_pose_score, min_part_score=min_part_score)
240
+
241
+ draw_image = cv2.cvtColor(draw_image, cv2.COLOR_BGR2RGB)
242
 
243
+ if filename:
244
+ cv2.imwrite(os.path.join(output_dir, filename), draw_image)
245
+ else:
246
+ cv2.imwrite(os.path.join(output_dir, "output.png"), draw_image)
247
+
248
+ st.image(draw_image, caption='PoseNet Output', use_column_width=True)
249
+ st.text("Results for image: %s" % filename)
250
+ st.text("Size of draw_image: {}".format(draw_image.shape))
251
 
252
+ for pi in range(len(pose_scores)):
253
+ if pose_scores[pi] == 0.:
254
+ break
255
+ st.text('Pose #%d, score = %f' % (pi, pose_scores[pi]))
256
+ for ki, (s, c) in enumerate(zip(keypoint_scores[pi, :], keypoint_coords[pi, :, :])):
257
+ st.text('Keypoint %s, score = %f, coord = %s' % (posenet.PART_NAMES[ki], s, c))
258
 
259
  if __name__ == "__main__":
260
+ main()
261