#create a Streamlit app using info from image_demo.py import cv2 import time import argparse import os import torch import posenet import tempfile from posenet.utils import * import streamlit as st from posenet.decode_multi import * from visualizers import * from ground_truth_dataloop import * import cv2 import time import argparse import os import torch import posenet import streamlit as st from posenet.decode_multi import * from visualizers import * from ground_truth_dataloop import * st.title('PoseNet Image Analyzer') def process_frame(frame, scale_factor, output_stride): input_image, draw_image, output_scale = process_input(frame, scale_factor=scale_factor, output_stride=output_stride) return input_image, draw_image, output_scale @st.cache_data() def load_model(model): model = posenet.load_model(model) model = model.cuda() return model def main(): MAX_FILE_SIZE = 20 * 1024 * 1024 # 20 MB model_number = st.sidebar.selectbox('Model', [101, 100, 75, 50]) scale_factor = 1.0 output_stride = st.sidebar.selectbox('Output Stride', [8, 16, 32, 64]) min_pose_score = st.sidebar.number_input("Minimum Pose Score", min_value=0.000, max_value=1.000, value=0.10, step=0.001) st.sidebar.markdown(f'
The current number is {min_pose_score:.3f}
', unsafe_allow_html=True) min_part_score = st.sidebar.number_input("Minimum Part Score", min_value=0.000, max_value=1.000, value=0.010, step=0.001) st.sidebar.markdown(f'The current number is {min_part_score:.3f}
', unsafe_allow_html=True) model = load_model(model_number) output_stride = model.output_stride output_dir = st.sidebar.text_input('Output Directory', './output') option = st.selectbox('Choose an option', ['Upload Image', 'Upload Video', 'Try existing image']) if option == 'Upload Video': video_display_mode = st.selectbox("Video Display Mode", ['Frame by Frame', 'Entire Video']) uploaded_video = st.file_uploader("Upload a video (mp4, mov, avi)", type=['mp4', 'mov', 'avi']) if uploaded_video is not None: tfile = tempfile.NamedTemporaryFile(delete=False) tfile.write(uploaded_video.read()) vidcap = cv2.VideoCapture(tfile.name) success, image = vidcap.read() frames = [] frame_count = 0 while success: input_image, draw_image, output_scale = process_frame(image, scale_factor, output_stride) pose_scores, keypoint_scores, keypoint_coords = run_model(input_image, model, output_stride, output_scale) result_image = posenet.draw_skel_and_kp( draw_image, pose_scores, keypoint_scores, keypoint_coords, min_pose_score=min_pose_score, min_part_score=min_part_score) result_image = cv2.cvtColor(result_image, cv2.COLOR_BGR2RGB) # result_image = print_frame(draw_image, pose_scores, keypoint_scores, keypoint_coords, output_dir, min_part_score=min_part_score, min_pose_score=min_pose_score) if result_image is not None: frames.append(result_image) success, image = vidcap.read() frame_count += 1 if video_display_mode == 'Frame by Frame': st.image(result_image, caption=f'Frame {frame_count}', use_column_width=True) # Progress bar progress_bar = st.progress(0) # Write the output video output_file = 'output.mp4' height, width, layers = frames[0].shape size = (width,height) output_file_path = os.path.join(output_dir, output_file) out = cv2.VideoWriter(output_file_path, cv2.VideoWriter_fourcc(*'mp4v'), 15, size) for i in range(len(frames)): progress_percentage = i / len(frames) progress_bar.progress(progress_percentage) out.write(cv2.cvtColor(frames[i], cv2.COLOR_RGB2BGR)) out.release() # Display the processed video if video_display_mode == 'Entire Video': with open(output_file_path, "rb") as file: bytes_data = file.read() st.download_button( label="Download video", data=bytes_data, file_name=output_file, mime="video/mp4", ) # video_file = open(output_file_path, 'rb') # st.write(f"Output file path: {output_file_path}") # video_bytes = video_file.read() # st.video(video_bytes) # try: # st.video(bytes_data, format="video/mp4", start_time=0) # # st.write(f"Output file path: {output_file_path}") # # st.video('./output/output.mp4', format="video/mp4", start_time=0) # except Exception as e: # st.write("Error: ", str(e)) if frames: frame_idx = st.slider('Choose a frame', 0, len(frames) - 1, 0) input_image, draw_image, output_scale = process_frame(frames[frame_idx], scale_factor, output_stride) pose_scores, keypoint_scores, keypoint_coords = run_model(input_image, model, output_stride, output_scale) pose_data = { 'pose_scores': pose_scores.tolist(), 'keypoint_scores': keypoint_scores.tolist(), 'keypoint_coords': keypoint_coords.tolist() } st.image(draw_image, caption=f'Frame {frame_idx + 1}', use_column_width=True) st.write(pose_data) progress_bar.progress(1.0) elif option == 'Upload Image': image_file = st.file_uploader("Upload Image (Max 10MB)", type=['png', 'jpg', 'jpeg']) if image_file is not None: if image_file.size > MAX_FILE_SIZE: st.error("File size exceeds the 10MB limit. Please upload a smaller file.") file_bytes = np.asarray(bytearray(image_file.read()), dtype=np.uint8) input_image = cv2.imdecode(file_bytes, 1) filename = image_file.name # Crop the image here as needed # input_image = input_image[y:y+h, x:x+w] input_image, source_image, output_scale = process_input( input_image, scale_factor, output_stride) pose_scores, keypoint_scores, keypoint_coords = run_model(input_image, model, output_stride, output_scale) print_frame(source_image, pose_scores, keypoint_scores, keypoint_coords, output_dir, filename=filename, min_part_score=min_part_score, min_pose_score=min_pose_score) else: st.sidebar.warning("Please upload an image.") elif option == 'Try existing image': image_dir = st.sidebar.text_input('Image Directory', './images_train') if output_dir: if not os.path.exists(output_dir): os.makedirs(output_dir) filenames = [f.path for f in os.scandir(image_dir) if f.is_file() and f.path.endswith(('.png', '.jpg'))] if filenames: selected_image = st.sidebar.selectbox('Choose an image', filenames) input_image, draw_image, output_scale = posenet.read_imgfile( selected_image, scale_factor=scale_factor, output_stride=output_stride) filename = os.path.basename(selected_image) result_image, pose_scores, keypoint_scores, keypoint_coords = run_model(input_image, draw_image, model, output_stride, output_scale) print_frame(result_image, pose_scores, keypoint_scores, keypoint_coords, output_dir, filename=selected_image, min_part_score=min_part_score, min_pose_score=min_pose_score) else: st.sidebar.warning("No images found in directory.") #same as utils.py _process_input def process_input(source_img, scale_factor=1.0, output_stride=16): target_width, target_height = posenet.valid_resolution( source_img.shape[1] * scale_factor, source_img.shape[0] * scale_factor, output_stride=output_stride) scale = np.array([source_img.shape[0] / target_height, source_img.shape[1] / target_width]) input_img = cv2.resize(source_img, (target_width, target_height), interpolation=cv2.INTER_LINEAR) input_img = cv2.cvtColor(input_img, cv2.COLOR_BGR2RGB).astype(np.float32) input_img = input_img * (2.0 / 255.0) - 1.0 input_img = input_img.transpose((2, 0, 1)).reshape(1, 3, target_height, target_width) return input_img, source_img, scale def run_model(input_image, model, output_stride, output_scale): with torch.no_grad(): input_image = torch.Tensor(input_image).cuda() heatmaps_result, offsets_result, displacement_fwd_result, displacement_bwd_result = model(input_image) # st.text("model heatmaps_result shape: {}".format(heatmaps_result.shape)) # st.text("model offsets_result shape: {}".format(offsets_result.shape)) pose_scores, keypoint_scores, keypoint_coords, pose_offsets = posenet.decode_multi.decode_multiple_poses( heatmaps_result.squeeze(0), offsets_result.squeeze(0), displacement_fwd_result.squeeze(0), displacement_bwd_result.squeeze(0), output_stride=output_stride, max_pose_detections=10, min_pose_score=0.0) # st.text("decoded pose_scores shape: {}".format(pose_scores.shape)) # st.text("decoded pose_offsets shape: {}".format(pose_offsets.shape)) keypoint_coords *= output_scale # Convert BGR to RGB return pose_scores, keypoint_scores, keypoint_coords def print_frame(draw_image, pose_scores, keypoint_scores, keypoint_coords, output_dir, filename=None, min_part_score=0.01, min_pose_score=0.1): if output_dir: draw_image = posenet.draw_skel_and_kp( draw_image, pose_scores, keypoint_scores, keypoint_coords, min_pose_score=min_pose_score, min_part_score=min_part_score) draw_image = cv2.cvtColor(draw_image, cv2.COLOR_BGR2RGB) if filename: cv2.imwrite(os.path.join(output_dir, filename), draw_image) else: cv2.imwrite(os.path.join(output_dir, "output.png"), draw_image) st.image(draw_image, caption='PoseNet Output', use_column_width=True) st.text("Results for image: %s" % filename) st.text("Size of draw_image: {}".format(draw_image.shape)) for pi in range(len(pose_scores)): if pose_scores[pi] == 0.: break st.text('Pose #%d, score = %f' % (pi, pose_scores[pi])) for ki, (s, c) in enumerate(zip(keypoint_scores[pi, :], keypoint_coords[pi, :, :])): st.text('Keypoint %s, score = %f, coord = %s' % (posenet.PART_NAMES[ki], s, c)) if __name__ == "__main__": main()