Spaces:
Running
Running
from pathlib import Path | |
import streamlit as st | |
from transformers import AutoModelForSequenceClassification | |
from transformers import AutoTokenizer | |
from transformers import TextClassificationPipeline | |
def get_pipe(): | |
model = AutoModelForSequenceClassification.from_pretrained( | |
"issai/rembert-sentiment-analysis-polarity-classification-kazakh") | |
tokenizer = AutoTokenizer.from_pretrained("issai/rembert-sentiment-analysis-polarity-classification-kazakh") | |
return TextClassificationPipeline(model=model, tokenizer=tokenizer) | |
st.title('KazSandra') | |
static_folder = Path(__file__).parent / 'static' | |
assert static_folder.exists() | |
st.write((static_folder / 'description.txt').read_text()) | |
st.image(str(static_folder / 'kazsandra.jpg')) | |
input_text = st.text_area('Input text', placeholder='Provide your text', value='Осы кітап қызық сияқты.') | |
# reviews = ["Бұл бейнефильм маған түк ұнамады.", "Осы кітап қызық сияқты."] | |
pipe = get_pipe() | |
# for review in reviews: | |
if input_text: | |
out = pipe(input_text)[0] | |
st.text("Label: {label}\nScore: {score}".format(**out)) | |