Spaces:
Running
Running
File size: 21,087 Bytes
e93eb3d 046eafc e93eb3d 046eafc e93eb3d f0b0bce e93eb3d f0b0bce e93eb3d f0b0bce e93eb3d 046eafc e93eb3d 046eafc e93eb3d 046eafc e93eb3d 046eafc e93eb3d 046eafc e93eb3d 046eafc e93eb3d 046eafc e93eb3d 046eafc e93eb3d 6f2c714 e93eb3d 046eafc e93eb3d 046eafc e93eb3d 046eafc e93eb3d 046eafc e93eb3d 6f2c714 e93eb3d 6f2c714 e93eb3d 6f2c714 e93eb3d 6f2c714 e93eb3d 6f2c714 e93eb3d f0b0bce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 |
import ast
import datetime
import os
from typing import List, Dict, Generator
from dotenv import load_dotenv
from tenacity import (
retry,
stop_after_attempt,
wait_random_exponential,
) # for exponential backoff
# Load environment variables from .env file
load_dotenv()
@retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(3))
def anthropic_completion_with_backoff(client, *args, **kwargs):
return client.beta.prompt_caching.messages.create(*args, **kwargs)
def get_anthropic(model: str,
prompt: str,
temperature: float = 0,
max_tokens: int = 4096,
system: str = '',
chat_history: List[Dict] = None,
secrets: Dict = {},
verbose=False) -> \
Generator[dict, None, None]:
model = model.replace('anthropic:', '')
# https://docs.anthropic.com/en/docs/build-with-claude/prompt-caching
import anthropic
clawd_key = secrets.get('ANTHROPIC_API_KEY')
clawd_client = anthropic.Anthropic(api_key=clawd_key) if clawd_key else None
if chat_history is None:
chat_history = []
messages = []
# Add conversation history, removing cache_control from all but the last two user messages
for i, message in enumerate(chat_history):
if message["role"] == "user":
content = message["content"][0]["text"] if isinstance(message["content"], list) else message["content"]
if i >= len(chat_history) - 3: # Last two user messages
messages.append({
"role": "user",
"content": [
{
"type": "text",
"text": content,
"cache_control": {"type": "ephemeral"}
}
]
})
else:
messages.append({
"role": "user",
"content": [{"type": "text", "text": content}]
})
else:
messages.append(message)
# Add the new user message
messages.append({
"role": "user",
"content": [
{
"type": "text",
"text": prompt,
"cache_control": {"type": "ephemeral"}
}
]
})
response = anthropic_completion_with_backoff(clawd_client,
model=model,
max_tokens=max_tokens,
temperature=temperature,
system=system,
messages=messages,
stream=True
)
output_tokens = 0
input_tokens = 0
cache_creation_input_tokens = 0
cache_read_input_tokens = 0
for chunk in response:
if chunk.type == "content_block_start":
# This is where we might find usage info in the future
pass
elif chunk.type == "content_block_delta":
yield dict(text=chunk.delta.text)
elif chunk.type == "message_delta":
output_tokens = dict(chunk.usage).get('output_tokens', 0)
elif chunk.type == "message_start":
usage = chunk.message.usage
input_tokens = dict(usage).get('input_tokens', 0)
cache_creation_input_tokens = dict(usage).get('cache_creation_input_tokens', 0)
cache_read_input_tokens = dict(usage).get('cache_read_input_tokens', 0)
else:
if verbose:
print("Unknown chunk type:", chunk.type)
print("Chunk:", chunk)
if verbose:
# After streaming is complete, print the usage information
print(f"Output tokens: {output_tokens}")
print(f"Input tokens: {input_tokens}")
print(f"Cache creation input tokens: {cache_creation_input_tokens}")
print(f"Cache read input tokens: {cache_read_input_tokens}")
yield dict(output_tokens=output_tokens, input_tokens=input_tokens,
cache_creation_input_tokens=cache_creation_input_tokens,
cache_read_input_tokens=cache_read_input_tokens)
@retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(3))
def openai_completion_with_backoff(client, *args, **kwargs):
return client.chat.completions.create(*args, **kwargs)
def get_openai(model: str,
prompt: str,
temperature: float = 0,
max_tokens: int = 4096,
system: str = '',
chat_history: List[Dict] = None,
secrets: Dict = {},
verbose=False) -> Generator[dict, None, None]:
if model.startswith('ollama:'):
model = model.replace('ollama:', '')
openai_key = secrets.get('OLLAMA_OPENAI_API_KEY')
openai_base_url = secrets.get('OLLAMA_OPENAI_BASE_URL', 'http://localhost:11434/v1/')
else:
model = model.replace('openai:', '')
openai_key = secrets.get('OPENAI_API_KEY')
openai_base_url = secrets.get('OPENAI_BASE_URL', 'https://api.openai.com/v1')
from openai import OpenAI
openai_client = OpenAI(api_key=openai_key, base_url=openai_base_url) if openai_key else None
if chat_history is None:
chat_history = []
chat_history_copy = chat_history.copy()
for mi, message in enumerate(chat_history_copy):
if isinstance(message["content"], list):
chat_history_copy[mi]["content"] = message["content"][0]["text"]
chat_history = chat_history_copy
messages = [{"role": "system", "content": system}] + chat_history + [{"role": "user", "content": prompt}]
response = openai_completion_with_backoff(openai_client,
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stream=True,
)
output_tokens = 0
input_tokens = 0
for chunk in response:
if chunk.choices[0].delta.content:
yield dict(text=chunk.choices[0].delta.content)
if chunk.usage:
output_tokens = chunk.usage.completion_tokens
input_tokens = chunk.usage.prompt_tokens
if verbose:
print(f"Output tokens: {output_tokens}")
print(f"Input tokens: {input_tokens}")
yield dict(output_tokens=output_tokens, input_tokens=input_tokens)
def openai_messages_to_gemini_history(messages):
"""Converts OpenAI messages to Gemini history format.
Args:
messages: A list of OpenAI messages, each with "role" and "content" keys.
Returns:
A list of dictionaries representing the chat history for Gemini.
"""
history = []
for message in messages:
if isinstance(message["content"], list):
message["content"] = message["content"][0]["text"]
if message["role"] == "user":
history.append({"role": "user", "parts": [{"text": message["content"]}]})
elif message["role"] == "assistant":
history.append({"role": "model", "parts": [{"text": message["content"]}]})
# Optionally handle system messages if needed
# elif message["role"] == "system":
# history.append({"role": "system", "parts": [{"text": message["content"]}]})
return history
@retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(3))
def gemini_send_message_with_backoff(chat, prompt, stream=True):
return chat.send_message(prompt, stream=stream)
@retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(3))
def gemini_generate_content_with_backoff(model, prompt, stream=True):
return model.generate_content(prompt, stream=stream)
def get_google(model: str,
prompt: str,
temperature: float = 0,
max_tokens: int = 4096,
system: str = '',
chat_history: List[Dict] = None,
secrets: Dict = {},
verbose=False) -> Generator[dict, None, None]:
model = model.replace('google:', '').replace('gemini:', '')
import google.generativeai as genai
gemini_key = secrets.get("GEMINI_API_KEY")
genai.configure(api_key=gemini_key)
# Create the model
generation_config = {
"temperature": temperature,
"top_p": 0.95,
"top_k": 64,
"max_output_tokens": max_tokens,
"response_mime_type": "text/plain",
}
if chat_history is None:
chat_history = []
chat_history = chat_history.copy()
chat_history = openai_messages_to_gemini_history(chat_history)
# NOTE: assume want own control. Too many false positives by Google.
from google.generativeai.types import HarmCategory
from google.generativeai.types import HarmBlockThreshold
safety_settings = {
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
}
cache = None
# disable cache for now until work into things well
use_cache = False
if use_cache and model == 'gemini-1.5-pro':
from google.generativeai import caching
# Estimate token count (this is a rough estimate, you may need a more accurate method)
estimated_tokens = len(prompt.split()) + sum(len(msg['content'].split()) for msg in chat_history)
if estimated_tokens > 32000:
cache = caching.CachedContent.create(
model=model,
display_name=f'cache_{datetime.datetime.now().isoformat()}',
system_instruction=system,
contents=[prompt] + [msg['content'] for msg in chat_history],
ttl=datetime.timedelta(minutes=5), # Set an appropriate TTL. Short for now for cost savings.
)
gemini_model = genai.GenerativeModel.from_cached_content(cached_content=cache)
else:
gemini_model = genai.GenerativeModel(model_name=model,
generation_config=generation_config,
safety_settings=safety_settings)
else:
gemini_model = genai.GenerativeModel(model_name=model,
generation_config=generation_config,
safety_settings=safety_settings)
if cache:
response = gemini_generate_content_with_backoff(gemini_model, prompt, stream=True)
else:
chat = gemini_model.start_chat(history=chat_history)
response = gemini_send_message_with_backoff(chat, prompt, stream=True)
output_tokens = 0
input_tokens = 0
cache_read_input_tokens = 0
cache_creation_input_tokens = 0
for chunk in response:
if chunk.text:
yield dict(text=chunk.text)
if chunk.usage_metadata:
output_tokens = chunk.usage_metadata.candidates_token_count
input_tokens = chunk.usage_metadata.prompt_token_count
cache_read_input_tokens = chunk.usage_metadata.cached_content_token_count
cache_creation_input_tokens = 0 # This might need to be updated if available in the API
if verbose:
print(f"Output tokens: {output_tokens}")
print(f"Input tokens: {input_tokens}")
print(f"Cached tokens: {cache_read_input_tokens}")
yield dict(output_tokens=output_tokens, input_tokens=input_tokens,
cache_read_input_tokens=cache_read_input_tokens,
cache_creation_input_tokens=cache_creation_input_tokens)
def delete_cache(cache):
if cache:
cache.delete()
print(f"Cache {cache.display_name} deleted.")
else:
print("No cache to delete.")
def get_groq(model: str,
prompt: str,
temperature: float = 0,
max_tokens: int = 4096,
system: str = '',
chat_history: List[Dict] = None,
secrets: Dict = {},
verbose=False) -> Generator[dict, None, None]:
model = model.replace('groq:', '')
from groq import Groq
groq_key = secrets.get("GROQ_API_KEY")
client = Groq(api_key=groq_key)
if chat_history is None:
chat_history = []
chat_history = chat_history.copy()
messages = [{"role": "system", "content": system}] + chat_history + [{"role": "user", "content": prompt}]
stream = openai_completion_with_backoff(client,
messages=messages,
model=model,
temperature=temperature,
max_tokens=max_tokens,
stream=True,
)
output_tokens = 0
input_tokens = 0
for chunk in stream:
if chunk.choices[0].delta.content:
yield dict(text=chunk.choices[0].delta.content)
if chunk.usage:
output_tokens = chunk.usage.completion_tokens
input_tokens = chunk.usage.prompt_tokens
if verbose:
print(f"Output tokens: {output_tokens}")
print(f"Input tokens: {input_tokens}")
yield dict(output_tokens=output_tokens, input_tokens=input_tokens)
def get_cerebras(model: str,
prompt: str,
temperature: float = 0,
max_tokens: int = 4096,
system: str = '',
chat_history: List[Dict] = None,
secrets: Dict = {},
verbose=False) -> Generator[dict, None, None]:
# context_length is only 8207
model = model.replace('cerebras:', '')
from cerebras.cloud.sdk import Cerebras
api_key = secrets.get("CEREBRAS_OPENAI_API_KEY")
client = Cerebras(api_key=api_key)
if chat_history is None:
chat_history = []
chat_history = chat_history.copy()
messages = [{"role": "system", "content": system}] + chat_history + [{"role": "user", "content": prompt}]
stream = openai_completion_with_backoff(client,
messages=messages,
model=model,
temperature=temperature,
max_tokens=max_tokens,
stream=True,
)
output_tokens = 0
input_tokens = 0
for chunk in stream:
if chunk.choices[0].delta.content:
yield dict(text=chunk.choices[0].delta.content)
if chunk.usage:
output_tokens = chunk.usage.completion_tokens
input_tokens = chunk.usage.prompt_tokens
if verbose:
print(f"Output tokens: {output_tokens}")
print(f"Input tokens: {input_tokens}")
yield dict(output_tokens=output_tokens, input_tokens=input_tokens)
def get_openai_azure(model: str,
prompt: str,
temperature: float = 0,
max_tokens: int = 4096,
system: str = '',
chat_history: List[Dict] = None,
secrets: Dict = {},
verbose=False) -> Generator[dict, None, None]:
model = model.replace('azure:', '').replace('openai_azure:', '')
from openai import AzureOpenAI
azure_endpoint = secrets.get("AZURE_OPENAI_ENDPOINT") # e.g. https://project.openai.azure.com
azure_key = secrets.get("AZURE_OPENAI_API_KEY")
azure_deployment = secrets.get("AZURE_OPENAI_DEPLOYMENT") # i.e. deployment name with some models deployed
azure_api_version = secrets.get('AZURE_OPENAI_API_VERSION', '2024-07-01-preview')
assert azure_endpoint is not None, "Azure OpenAI endpoint not set"
assert azure_key is not None, "Azure OpenAI API key not set"
assert azure_deployment is not None, "Azure OpenAI deployment not set"
client = AzureOpenAI(
azure_endpoint=azure_endpoint,
api_key=azure_key,
api_version=azure_api_version,
azure_deployment=azure_deployment,
)
if chat_history is None:
chat_history = []
messages = [{"role": "system", "content": system}] + chat_history + [{"role": "user", "content": prompt}]
response = openai_completion_with_backoff(client,
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stream=True
)
output_tokens = 0
input_tokens = 0
for chunk in response:
if chunk.choices and chunk.choices[0].delta.content:
yield dict(text=chunk.choices[0].delta.content)
if chunk.usage:
output_tokens = chunk.usage.completion_tokens
input_tokens = chunk.usage.prompt_tokens
if verbose:
print(f"Output tokens: {output_tokens}")
print(f"Input tokens: {input_tokens}")
yield dict(output_tokens=output_tokens, input_tokens=input_tokens)
def to_list(x):
if x:
try:
ollama_model_list = ast.literal_eval(x)
assert isinstance(ollama_model_list, list)
except:
x = [x]
else:
x = []
return x
def get_model_names(secrets, on_hf_spaces=False):
if not on_hf_spaces:
secrets = os.environ
if secrets.get('ANTHROPIC_API_KEY'):
anthropic_models = ['claude-3-5-sonnet-20240620', 'claude-3-haiku-20240307', 'claude-3-opus-20240229']
else:
anthropic_models = []
if secrets.get('OPENAI_API_KEY'):
if secrets.get('OPENAI_MODEL_NAME'):
openai_models = to_list(secrets.get('OPENAI_MODEL_NAME'))
else:
openai_models = ['gpt-4o', 'gpt-4-turbo-2024-04-09', 'gpt-4o-mini']
else:
openai_models = []
if secrets.get('AZURE_OPENAI_API_KEY'):
if secrets.get('AZURE_OPENAI_MODEL_NAME'):
azure_models = to_list(secrets.get('AZURE_OPENAI_MODEL_NAME'))
else:
azure_models = ['gpt-4o', 'gpt-4-turbo-2024-04-09', 'gpt-4o-mini']
else:
azure_models = []
if secrets.get('GEMINI_API_KEY'):
google_models = ['gemini-1.5-pro-latest', 'gemini-1.5-flash-latest']
else:
google_models = []
if secrets.get('GROQ_API_KEY'):
groq_models = ['llama-3.1-70b-versatile',
'llama-3.1-8b-instant',
'llama3-groq-70b-8192-tool-use-preview',
'llama3-groq-8b-8192-tool-use-preview',
'mixtral-8x7b-32768']
else:
groq_models = []
if secrets.get('CEREBRAS_OPENAI_API_KEY'):
cerebras_models = ['llama3.1-70b', 'llama3.1-8b']
else:
cerebras_models = []
if secrets.get('OLLAMA_OPENAI_API_KEY'):
ollama_model = os.environ['OLLAMA_OPENAI_MODEL_NAME']
ollama_model = to_list(ollama_model)
else:
ollama_model = []
groq_models = ['groq:' + x for x in groq_models]
cerebras_models = ['cerebras:' + x for x in cerebras_models]
azure_models = ['azure:' + x for x in azure_models]
openai_models = ['openai:' + x for x in openai_models]
google_models = ['google:' + x for x in google_models]
anthropic_models = ['anthropic:' + x for x in anthropic_models]
ollama = ['ollama:' + x if 'ollama:' not in x else x for x in ollama_model]
return anthropic_models + openai_models + google_models + groq_models + cerebras_models + azure_models + ollama
def get_model_api(model: str):
assert model not in ['', None], "Model not set, need to add API key to have models appear and select one."
if model.startswith('anthropic:'):
return get_anthropic
elif model.startswith('openai:') or model.startswith('ollama:'):
return get_openai
elif model.startswith('google:'):
return get_google
elif model.startswith('groq:'):
return get_groq
elif model.startswith('cerebras:'):
return get_cerebras
elif model.startswith('azure:'):
return get_openai_azure
else:
raise ValueError(
f"Unsupported model: {model}. Ensure to add prefix (e.g. openai:, google:, groq:, cerebras:, azure:, ollama:, anthropic:)") |