Spaces:
Sleeping
Sleeping
from huggingface_hub import InferenceClient | |
import gradio as gr | |
import random | |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
def format_prompt(message, history): | |
prompt = "Você é um assistente pronto para responder no idioma português. Sua primeira resposta dependende exclussivamente do que for perguntado pelo usuário. Aguarde sempre o usuário perguntar para somente depois você reponder." | |
if history: | |
for user_prompt, bot_response in history: | |
prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>" | |
prompt += f"<start_of_turn>model{bot_response}" | |
prompt += f"<start_of_turn>user{message}<end_of_turn><start_of_turn>model" | |
return prompt | |
def generate(prompt, history, temperature=0.7, max_new_tokens=1024, top_p=0.90, repetition_penalty=0.9): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
if not history: | |
history = [] | |
rand_seed = random.randint(1, 1111111111111111) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=rand_seed, | |
) | |
formatted_prompt = format_prompt(prompt, history) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
yield output | |
history.append((prompt, output)) | |
return output | |
mychatbot = gr.Chatbot( | |
avatar_images=["./user.png", "./botgm.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,) | |
additional_inputs=[ | |
gr.Slider( | |
label="Temperature", | |
value=0.7, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
interactive=True, | |
info="Higher values generate more diverse outputs", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=6400, | |
minimum=0, | |
maximum=8000, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
), | |
gr.Slider( | |
label="Top-p", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.01, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.0, | |
minimum=0.1, | |
maximum=2.0, | |
step=0.1, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
] | |
iface = gr.ChatInterface(fn=generate, | |
chatbot=mychatbot, | |
additional_inputs=additional_inputs, | |
submit_btn='Enviar', | |
retry_btn=None, | |
undo_btn=None, | |
clear_btn=None | |
) | |
with gr.Blocks() as demo: | |
gr.HTML("<center><h2 style='font-size: 22px; text-align: center; color: #007BFF;'>LuChat IA</h2><p><b>Tire suas dúvidas, peça sugestões para melhorias no seu texto e muito mais!</b></p></center>") | |
iface.render() | |
demo.queue().launch(show_api=True) |