File size: 4,424 Bytes
7e9eac8
d853661
b6e1649
7e9eac8
 
b6e1649
 
7e9eac8
 
 
 
 
 
 
 
5b5f8d9
 
 
 
7e9eac8
 
5b5f8d9
7e9eac8
5b5f8d9
684c796
69f50e2
7e9eac8
5b5f8d9
 
bfd6986
5b5f8d9
 
bfd6986
5b5f8d9
bfd6986
 
 
 
 
 
 
5b5f8d9
bfd6986
 
 
5b5f8d9
bfd6986
 
5b5f8d9
 
bfd6986
 
7e9eac8
 
 
 
5b5f8d9
 
 
7e9eac8
 
 
5b5f8d9
 
 
7e9eac8
 
 
5b5f8d9
7e9eac8
5b5f8d9
7e9eac8
 
 
dd6a80b
5b5f8d9
dd6a80b
7e9eac8
dd6a80b
7e9eac8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import logging
import os
import time
import uuid
import gradio as gr
import soundfile as sf
from model import get_pretrained_model, language_to_models

title = "# Next-gen Kaldi: Text-to-speech (TTS)"

description = """
This space shows how to convert text to speech with Next-gen Kaldi.
It is running on CPU within a docker container provided by Hugging Face.
See more information by visiting the following links:
- <https://github.com/k2-fsa/sherpa-onnx>
If you want to deploy it locally, please see <https://k2-fsa.github.io/sherpa/>
If you want to use Android APKs, please see <https://k2-fsa.github.io/sherpa/onnx/tts/apk.html>
If you want to use Android text-to-speech engine APKs, please see <https://k2-fsa.github.io/sherpa/onnx/tts/apk-engine.html>
If you want to download an all-in-one exe for Windows, please see <https://github.com/k2-fsa/sherpa-onnx/releases/tag/tts-models>
"""

css = """.result {display:flex;flex-direction:column}.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}.result_item_error {background-color:#ff7070;color:white;align-self:start}"""

examples = [["Portuguese", "csukuangfj/vits-mms-por", "Eu desejo uma versão simplificada para português.", 0, 1.0]]

language_choices = ["Portuguese"]

def update_model_dropdown(language):
    return gr.Dropdown(choices=language_to_models.get(language, []), value=language_to_models.get(language, [""])[0], interactive=True)

def build_html_output(s, style="result_item_success"):
    return f"""<div class='result'><div class='result_item {style}'>{s}</div></div>"""

def process(language, repo_id, text, sid, speed):
    logging.info(f"Input text: {text}. sid: {sid}, speed: {speed}")
    sid = int(sid)
    tts = get_pretrained_model(repo_id, speed)
    start = time.time()
    audio = tts.generate(text, sid=sid)
    end = time.time()
    if len(audio.samples) == 0:
        raise ValueError("Error in generating audios. Please read previous error messages.")
    duration = len(audio.samples) / audio.sample_rate
    elapsed_seconds = end - start
    rtf = elapsed_seconds / duration
    info = f"""Wave duration  : {duration:.3f} s <br/>Processing time: {elapsed_seconds:.3f} s <br/>RTF: {elapsed_seconds:.3f}/{duration:.3f} = {rtf:.3f} <br/>"""
    logging.info(info)
    logging.info(f"\nrepo_id: {repo_id}\ntext: {text}\nsid: {sid}\nspeed: {speed}")
    filename = str(uuid.uuid4()) + ".wav"
    sf.write(filename, audio.samples, samplerate=audio.sample_rate, subtype="PCM_16")
    return filename, build_html_output(info)

demo = gr.Blocks(css=css)

with demo:
    gr.Markdown(title)
    language_radio = gr.Radio(label="Language", choices=language_choices, value=language_choices[0])
    model_dropdown = gr.Dropdown(choices=language_to_models["Portuguese"], label="Select a model", value=language_to_models["Portuguese"][0])
    language_radio.change(update_model_dropdown, inputs=language_radio, outputs=model_dropdown)

    with gr.Tabs():
        with gr.TabItem("Please input your text"):
            input_text = gr.Textbox(label="Input text", info="Your text", lines=3, placeholder="Please input your text here")
            input_sid = gr.Textbox(label="Speaker ID", info="Speaker ID", lines=1, max_lines=1, value="0", placeholder="Speaker ID. Valid only for mult-speaker model")
            input_speed = gr.Slider(minimum=0.1, maximum=10, value=1, step=0.1, label="Speed (larger->faster; smaller->slower)")
            input_button = gr.Button("Submit")
            output_audio = gr.Audio(label="Output")
            output_info = gr.HTML(label="Info")
            gr.Examples(examples=examples, fn=process, inputs=[language_radio, model_dropdown, input_text, input_sid, input_speed], outputs=[output_audio, output_info])

        input_button.click(process, inputs=[language_radio, model_dropdown, input_text, input_sid, input_speed], outputs=[output_audio, output_info])

    gr.Markdown(description)

def download_espeak_ng_data():
    os.system("""cd /tmp; wget -qq https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/espeak-ng-data.tar.bz2; tar xf espeak-ng-data.tar.bz2""")

if __name__ == "__main__":
    download_espeak_ng_data()
    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
    logging.basicConfig(format=formatter, level=logging.INFO)
    demo.launch()