import cv2 import gradio as gr import io import numpy as np from z_app_factory import get_app thickness = 3 lineType = 8 font = cv2.FONT_HERSHEY_SIMPLEX def inference(image): image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) dic_res = get_app(image) code = dic_res["code"] data = dic_res["data"] msg = "aaa" if code == 401: msg = "Not RGB three channel picture" elif code == 402: msg = "Pixels less than 32 * 32" elif code == 403: msg = "Pixels greater than 4096 * 4096" elif code == 404: msg = "Files greater than 5MB" elif code == 405: msg = "System error, please contact the server for troubleshooting" import numpy as np img_out = np.zeros((500, 600, 3), dtype=np.uint8) if code!=200: cv2.putText(img_out, msg, (20, 200), font, 1, (0, 255, 0), 2) return img_out if code==200 and not data: cv2.putText(img_out, "no face detected", (20, 200), font, 1, (0, 255, 0), 2) return img_out lst_bbox = data['bbox'] lst_score = data['score'] for idx, image_bbox in enumerate(lst_bbox): score = lst_score[idx] cv2.rectangle( image, (image_bbox[0], image_bbox[1]), (image_bbox[0] + image_bbox[2], image_bbox[1] + image_bbox[3]), (0, int(255 * score), 0), 2) cv2.putText( image, str(score)[:4], (image_bbox[0], image_bbox[1] - 5), cv2.FONT_HERSHEY_SIMPLEX, 1.5 * image.shape[0] / 1024, (0, int(255 * score), 0), 2) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) return image title = "Detect Living Face" description = "demo for Detect Living Face. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "

Project Documents | Video Demo

" gr.Interface( inference, [gr.inputs.Image(label="Input")], gr.outputs.Image(type="pil", label="Output"), title=title, description=description, article=article, examples=[ ["imgs/11.jpg"], ["imgs/13.jpg"], ]).launch(debug=True)