File size: 30,946 Bytes
6747ba1
 
8d0af32
 
6747ba1
8d0af32
6747ba1
 
 
8d0af32
 
 
 
 
6747ba1
8d0af32
 
 
 
6747ba1
 
 
 
f140fcb
562a582
6747ba1
 
 
 
 
8d0af32
6747ba1
 
 
 
f140fcb
 
 
 
6747ba1
f140fcb
 
 
 
6747ba1
f140fcb
 
 
 
 
 
 
 
6747ba1
f140fcb
 
 
 
6747ba1
 
e04a2b6
6747ba1
f140fcb
 
 
 
 
 
 
 
6747ba1
 
 
 
 
30bdcef
6747ba1
30bdcef
6747ba1
 
f140fcb
 
 
 
 
 
6747ba1
 
30bdcef
 
6747ba1
 
 
 
bc0a051
5c275ae
bc0a051
 
 
6747ba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f140fcb
 
 
 
 
 
 
 
 
6747ba1
df7ef80
6747ba1
 
 
f140fcb
 
 
 
 
 
 
6747ba1
 
 
f140fcb
 
 
 
 
 
 
6747ba1
 
f140fcb
 
 
6747ba1
 
 
 
 
 
 
 
 
 
 
d2c5c02
6747ba1
 
 
562a582
 
 
f140fcb
 
562a582
 
6747ba1
 
 
d2c5c02
6747ba1
 
 
 
 
 
 
f140fcb
 
 
 
 
 
 
 
 
 
 
 
 
 
6747ba1
 
 
 
d2c5c02
6747ba1
 
 
 
 
 
 
96fd466
6747ba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335da0b
6747ba1
 
 
 
 
 
335da0b
f140fcb
 
 
 
 
 
 
 
 
 
 
 
 
6747ba1
 
 
 
 
 
f140fcb
 
 
 
 
 
 
 
 
 
 
 
 
6747ba1
 
 
 
 
 
 
f140fcb
 
 
 
 
 
 
 
 
 
 
 
 
6747ba1
 
 
 
 
 
f140fcb
 
 
 
 
 
 
 
 
 
 
 
 
6747ba1
 
 
 
335da0b
 
6747ba1
 
 
96fd466
6747ba1
 
 
96fd466
6747ba1
96fd466
 
 
6747ba1
 
 
 
 
 
 
 
96fd466
6747ba1
 
f140fcb
 
 
 
 
 
 
6747ba1
 
 
 
 
 
 
 
 
 
 
f140fcb
 
 
 
 
6747ba1
 
 
 
 
 
 
 
f140fcb
 
 
 
 
 
6747ba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e04a2b6
 
 
6747ba1
 
 
 
 
 
f140fcb
 
 
 
6747ba1
 
 
f140fcb
 
 
 
 
 
 
 
 
 
 
 
6747ba1
 
 
 
 
 
 
f140fcb
 
 
 
 
6747ba1
 
 
 
 
 
 
f140fcb
 
 
 
 
 
 
 
 
 
6747ba1
f140fcb
 
 
 
 
 
 
 
 
 
6747ba1
 
 
f140fcb
6747ba1
 
 
 
f140fcb
 
6747ba1
 
 
 
f140fcb
6747ba1
f140fcb
 
 
6747ba1
f140fcb
 
 
 
 
 
 
6747ba1
 
 
 
 
 
 
 
 
 
 
 
 
96fd466
f140fcb
6747ba1
 
30bdcef
 
 
 
6747ba1
 
 
f140fcb
 
6747ba1
 
 
f140fcb
 
6747ba1
f140fcb
 
 
 
6747ba1
f140fcb
 
 
6747ba1
 
 
 
f140fcb
 
 
 
 
 
 
 
 
 
6747ba1
f140fcb
 
 
 
 
 
 
 
 
 
6747ba1
 
f140fcb
 
 
 
 
6747ba1
 
f140fcb
 
 
 
 
 
6747ba1
 
f140fcb
 
 
 
 
 
 
 
 
 
 
 
 
 
6747ba1
 
f140fcb
 
 
 
 
 
 
 
 
 
6747ba1
 
f140fcb
 
 
 
 
 
 
 
 
6747ba1
 
f140fcb
 
 
 
 
 
 
 
 
6747ba1
f140fcb
 
 
 
 
6747ba1
 
f140fcb
 
 
 
 
 
 
 
 
 
 
6747ba1
f140fcb
 
 
 
 
 
 
 
 
 
 
6747ba1
f140fcb
 
 
6747ba1
f140fcb
 
 
6747ba1
 
f140fcb
 
 
 
 
 
 
 
 
 
6747ba1
 
f140fcb
 
 
 
6747ba1
f140fcb
 
 
 
6747ba1
 
 
 
 
 
 
f140fcb
 
 
 
 
 
 
6747ba1
f140fcb
 
 
 
 
 
 
6747ba1
f140fcb
 
 
 
 
 
 
6747ba1
f140fcb
 
 
 
 
 
 
6747ba1
f140fcb
 
 
 
 
 
 
6747ba1
 
f140fcb
 
 
 
 
6747ba1
 
 
 
 
 
 
f140fcb
 
 
 
 
 
6747ba1
 
 
f140fcb
 
 
6747ba1
 
 
 
 
 
f140fcb
 
 
 
 
6747ba1
 
 
 
 
 
 
 
f140fcb
 
6747ba1
 
 
f140fcb
 
6747ba1
 
f140fcb
 
 
 
5c275ae
6747ba1
 
 
f140fcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6747ba1
 
 
 
 
 
f140fcb
 
 
 
 
 
 
 
 
 
 
6747ba1
 
f140fcb
 
6747ba1
 
 
f140fcb
 
6747ba1
 
 
 
 
 
 
 
 
 
 
f140fcb
 
 
6747ba1
 
 
 
f140fcb
 
 
 
 
 
 
 
6747ba1
 
f140fcb
 
 
 
 
6747ba1
 
 
92e85a3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import re
import selfies as sf
import torch
import xgboost as xgb
from PIL import Image
from rdkit import Chem, RDLogger
from rdkit.Chem import DataStructs, AllChem, Descriptors, QED, Draw
from rdkit.Chem.Crippen import MolLogP
from rdkit.Contrib.SA_Score import sascorer
from sklearn.kernel_ridge import KernelRidge
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR
from transformers import BartForConditionalGeneration, AutoTokenizer
from transformers.modeling_outputs import BaseModelOutput

os.environ["OMP_MAX_ACTIVE_LEVELS"] = "1"

import models.fm4m as fm4m

RDLogger.logger().setLevel(RDLogger.ERROR)


# Function to display molecule image from SMILES
def smiles_to_image(smiles):
    mol = Chem.MolFromSmiles(smiles)
    return Draw.MolToImage(mol) if mol else None


# Dictionary for SMILES strings and corresponding images (you can replace with your actual image paths)
smiles_image_mapping = {
    "Mol 1": {
        "smiles": "C=C(C)CC(=O)NC[C@H](CO)NC(=O)C=Cc1ccc(C)c(Cl)c1",
        "image": "img/img1.png",
    },
    # Example SMILES for ethanol
    "Mol 2": {
        "smiles": "C=CC1(CC(=O)NC[C@@H](CCCC)NC(=O)c2cc(Cl)cc(Br)c2)CC1",
        "image": "img/img2.png",
    },
    # Example SMILES for butane
    "Mol 3": {
        "smiles": "C=C(C)C[C@H](NC(C)=O)C(=O)N1CC[C@H](NC(=O)[C@H]2C[C@@]2(C)Br)C(C)(C)C1",
        "image": "img/img3.png",
    },  # Example SMILES for ethylamine
    "Mol 4": {
        "smiles": "C=C1CC(CC(=O)N[C@H]2CCN(C(=O)c3ncccc3SC)C23CC3)C1",
        "image": "img/img4.png",
    },
    # Example SMILES for diethyl ether
    "Mol 5": {
        "smiles": "C=CCS[C@@H](C)CC(=O)OCC",
        "image": "img/img5.png",
    },  # Example SMILES for chloroethane
}

datasets = [" ", "BACE", "ESOL", "Load Custom Dataset"]

models_enabled = [
    "SELFIES-TED",
    "MHG-GED",
    "MolFormer",
    "SMI-TED",
    "Mordred",
    "MorganFingerprint",
]

fusion_available = ["Concat"]


# Function to handle evaluation and logging
def evaluate_and_log(models, dataset, task_type, eval_output, state):
    task_dic = {'Classification': 'CLS', 'Regression': 'RGR'}
    result = f"{eval_output}"
    result = result.replace(" Score", "")

    new_entry = {
        "Selected Models": str(models),
        "Dataset": dataset,
        "Task": task_dic[task_type],
        "Result": result,
    }
    new_entry_df = pd.DataFrame([new_entry])

    state["log_df"] = pd.concat([new_entry_df, state["log_df"]])
    return state["log_df"]


# Load images for selection
def load_image(path):
    try:
        return Image.open(smiles_image_mapping[path]["image"])
    except:
        pass


# Function to handle image selection
def handle_image_selection(image_key):
    smiles = smiles_image_mapping[image_key]["smiles"]
    mol_image = smiles_to_image(smiles)
    return smiles, mol_image


def calculate_properties(smiles):
    mol = Chem.MolFromSmiles(smiles)
    if mol:
        qed = QED.qed(mol)
        logp = MolLogP(mol)
        sa = sascorer.calculateScore(mol)
        wt = Descriptors.MolWt(mol)
        return qed, sa, logp, wt
    return None, None, None, None


# Function to calculate Tanimoto similarity
def calculate_tanimoto(smiles1, smiles2):
    mol1 = Chem.MolFromSmiles(smiles1)
    mol2 = Chem.MolFromSmiles(smiles2)
    if mol1 and mol2:
        fp1 = AllChem.GetMorganFingerprintAsBitVect(mol1, 2)
        fp2 = AllChem.GetMorganFingerprintAsBitVect(mol2, 2)
        return round(DataStructs.FingerprintSimilarity(fp1, fp2), 2)
    return None


gen_tokenizer = AutoTokenizer.from_pretrained("ibm/materials.selfies-ted")
gen_model = BartForConditionalGeneration.from_pretrained("ibm/materials.selfies-ted")


def generate(latent_vector, mask):
    encoder_outputs = BaseModelOutput(latent_vector)
    decoder_output = gen_model.generate(
        encoder_outputs=encoder_outputs,
        attention_mask=mask,
        max_new_tokens=64,
        do_sample=True,
        top_k=5,
        top_p=0.95,
        num_return_sequences=1,
    )
    selfies = gen_tokenizer.batch_decode(decoder_output, skip_special_tokens=True)
    return [sf.decoder(re.sub(r'\]\s*(.*?)\s*\[', r']\1[', i)) for i in selfies]


def perturb_latent(latent_vecs, noise_scale=0.5):
    return (
        torch.tensor(
            np.random.uniform(0, 1, latent_vecs.shape) * noise_scale,
            dtype=torch.float32,
        )
        + latent_vecs
    )


def encode(selfies):
    encoding = gen_tokenizer(
        selfies,
        return_tensors='pt',
        max_length=128,
        truncation=True,
        padding='max_length',
    )
    input_ids = encoding['input_ids']
    attention_mask = encoding['attention_mask']
    outputs = gen_model.model.encoder(
        input_ids=input_ids, attention_mask=attention_mask
    )
    model_output = outputs.last_hidden_state
    return model_output, attention_mask


# Function to generate canonical SMILES and molecule image
def generate_canonical(smiles):
    s = sf.encoder(smiles)
    selfie = s.replace("][", "] [")
    latent_vec, mask = encode([selfie])
    gen_mol = None
    for i in range(5, 51):
        print("Searching Latent space")
        noise = i / 10
        perturbed_latent = perturb_latent(latent_vec, noise_scale=noise)
        gen = generate(perturbed_latent, mask)
        mol = Chem.MolFromSmiles(gen[0])
        if mol:
            gen_mol = Chem.MolToSmiles(mol)
            if gen_mol != Chem.MolToSmiles(Chem.MolFromSmiles(smiles)):
                break
        else:
            print('Abnormal molecule:', gen[0])

    if gen_mol:
        # Calculate properties for ref and gen molecules
        print("calculating properties")
        ref_properties = calculate_properties(smiles)
        gen_properties = calculate_properties(gen_mol)
        tanimoto_similarity = calculate_tanimoto(smiles, gen_mol)

        # Prepare the table with ref mol and gen mol
        data = {
            "Property": ["QED", "SA", "LogP", "Mol Wt", "Tanimoto Similarity"],
            "Reference Mol": [
                ref_properties[0],
                ref_properties[1],
                ref_properties[2],
                ref_properties[3],
                tanimoto_similarity,
            ],
            "Generated Mol": [
                gen_properties[0],
                gen_properties[1],
                gen_properties[2],
                gen_properties[3],
                "",
            ],
        }
        df = pd.DataFrame(data)

        # Display molecule image of canonical smiles
        print("Getting image")
        mol_image = smiles_to_image(gen_mol)

        return df, gen_mol, mol_image
    return "Invalid SMILES", None, None


# Function to display evaluation score
def display_eval(selected_models, dataset, task_type, downstream, fusion_type, state):
    result = None

    try:
        downstream_model = downstream.split("*")[0].lstrip()
        downstream_model = downstream_model.rstrip()
        hyp_param = downstream.split("*")[-1].lstrip()
        hyp_param = hyp_param.rstrip()
        hyp_param = hyp_param.replace("nan", "float('nan')")
        params = eval(hyp_param)
    except:
        downstream_model = downstream.split("*")[0].lstrip()
        downstream_model = downstream_model.rstrip()
        params = None

    try:
        if not selected_models:
            return "Please select at least one enabled model."

        if len(selected_models) > 1:
            if task_type == "Classification":
                if downstream_model == "Default Settings":
                    downstream_model = "DefaultClassifier"
                    params = None

                (
                    result,
                    state["roc_auc"],
                    state["fpr"],
                    state["tpr"],
                    state["x_batch"],
                    state["y_batch"],
                ) = fm4m.multi_modal(
                    model_list=selected_models,
                    downstream_model=downstream_model,
                    params=params,
                    dataset=dataset,
                )

            elif task_type == "Regression":
                if downstream_model == "Default Settings":
                    downstream_model = "DefaultRegressor"
                    params = None

                (
                    result,
                    state["RMSE"],
                    state["y_batch_test"],
                    state["y_prob"],
                    state["x_batch"],
                    state["y_batch"],
                ) = fm4m.multi_modal(
                    model_list=selected_models,
                    downstream_model=downstream_model,
                    params=params,
                    dataset=dataset,
                )

        else:
            if task_type == "Classification":
                if downstream_model == "Default Settings":
                    downstream_model = "DefaultClassifier"
                    params = None

                (
                    result,
                    state["roc_auc"],
                    state["fpr"],
                    state["tpr"],
                    state["x_batch"],
                    state["y_batch"],
                ) = fm4m.single_modal(
                    model=selected_models[0],
                    downstream_model=downstream_model,
                    params=params,
                    dataset=dataset,
                )

            elif task_type == "Regression":
                if downstream_model == "Default Settings":
                    downstream_model = "DefaultRegressor"
                    params = None

                (
                    result,
                    state["RMSE"],
                    state["y_batch_test"],
                    state["y_prob"],
                    state["x_batch"],
                    state["y_batch"],
                ) = fm4m.single_modal(
                    model=selected_models[0],
                    downstream_model=downstream_model,
                    params=params,
                    dataset=dataset,
                )

        if result == None:
            result = "Data & Model Setting is incorrect"
    except Exception as e:
        return f"An error occurred: {e}"
    return f"{result}"


# Function to handle plot display
def display_plot(plot_type, state):
    fig, ax = plt.subplots()

    if plot_type == "Latent Space":
        x_batch, y_batch = state.get("x_batch"), state.get("y_batch")
        ax.set_title("T-SNE Plot")
        class_0 = x_batch
        class_1 = y_batch

        plt.scatter(class_1[:, 0], class_1[:, 1], c='red', label='Class 1')
        plt.scatter(class_0[:, 0], class_0[:, 1], c='blue', label='Class 0')

        ax.set_xlabel('Feature 1')
        ax.set_ylabel('Feature 2')
        ax.set_title('Dataset Distribution')

    elif plot_type == "ROC-AUC":
        roc_auc, fpr, tpr = state.get("roc_auc"), state.get("fpr"), state.get("tpr")
        ax.set_title("ROC-AUC Curve")
        try:
            ax.plot(
                fpr,
                tpr,
                color='darkorange',
                lw=2,
                label=f'ROC curve (area = {roc_auc:.4f})',
            )
            ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
            ax.set_xlim([0.0, 1.0])
            ax.set_ylim([0.0, 1.05])
        except:
            pass
        ax.set_xlabel('False Positive Rate')
        ax.set_ylabel('True Positive Rate')
        ax.set_title('Receiver Operating Characteristic')
        ax.legend(loc='lower right')

    elif plot_type == "Parity Plot":
        RMSE, y_batch_test, y_prob = (
            state.get("RMSE"),
            state.get("y_batch_test"),
            state.get("y_prob"),
        )
        ax.set_title("Parity plot")

        # change format
        try:
            print(y_batch_test)
            print(y_prob)
            y_batch_test = np.array(y_batch_test, dtype=float)
            y_prob = np.array(y_prob, dtype=float)
            ax.scatter(
                y_batch_test,
                y_prob,
                color="blue",
                label=f"Predicted vs Actual (RMSE: {RMSE:.4f})",
            )
            min_val = min(min(y_batch_test), min(y_prob))
            max_val = max(max(y_batch_test), max(y_prob))
            ax.plot([min_val, max_val], [min_val, max_val], 'r-')

        except:

            y_batch_test = []
            y_prob = []
            RMSE = None
            print(y_batch_test)
            print(y_prob)

        ax.set_xlabel('Actual Values')
        ax.set_ylabel('Predicted Values')

        ax.legend(loc='lower right')
    return fig


# Predefined dataset paths (these should be adjusted to your file paths)
predefined_datasets = {
    " ": " ",
    "BACE": f"./data/bace/train.csv, ./data/bace/test.csv, smiles, Class",
    "ESOL": f"./data/esol/train.csv, ./data/esol/test.csv, smiles, prop",
}


# Function to load a predefined dataset from the local path
def load_predefined_dataset(dataset_name):
    val = predefined_datasets.get(dataset_name)
    try:
        file_path = val.split(",")[0]
    except:
        file_path = False

    if file_path:
        df = pd.read_csv(file_path)
        return (
            df.head(),
            gr.update(choices=list(df.columns)),
            gr.update(choices=list(df.columns)),
            f"{dataset_name.lower()}",
        )
    return (
        pd.DataFrame(),
        gr.update(choices=[]),
        gr.update(choices=[]),
        f"Dataset not found",
    )


# Function to display the head of the uploaded CSV file
def display_csv_head(file):
    if file is not None:
        # Load the CSV file into a DataFrame
        df = pd.read_csv(file.name)
        return (
            df.head(),
            gr.update(choices=list(df.columns)),
            gr.update(choices=list(df.columns)),
        )
    return pd.DataFrame(), gr.update(choices=[]), gr.update(choices=[])


# Function to handle dataset selection (predefined or custom)
def handle_dataset_selection(selected_dataset):
    if selected_dataset == "Custom Dataset":
        # Show file upload fields for train and test datasets if "Custom Dataset" is selected
        return (
            gr.update(visible=True),
            gr.update(visible=True),
            gr.update(visible=True),
            gr.update(visible=True),
            gr.update(visible=True),
            gr.update(visible=False),
            gr.update(visible=True),
            gr.update(visible=True),
        )
    else:
        return (
            gr.update(visible=True),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
        )


# Function to select input and output columns and display a message
def select_columns(input_column, output_column, train_data, test_data, dataset_name):
    if input_column and output_column:
        return f"{train_data.name},{test_data.name},{input_column},{output_column},{dataset_name}"
    return "Please select both input and output columns."


def set_dataname(dataset_name, dataset_selector):
    if dataset_selector == "Custom Dataset":
        return f"{dataset_name}"
    return f"{dataset_selector}"


# Function to create model based on user input
def create_model(
    model_name, max_depth=None, n_estimators=None, alpha=None, degree=None, kernel=None
):
    if model_name == "XGBClassifier":
        model = xgb.XGBClassifier(
            objective='binary:logistic',
            eval_metric='auc',
            max_depth=max_depth,
            n_estimators=n_estimators,
            alpha=alpha,
        )
    elif model_name == "SVR":
        model = SVR(degree=degree, kernel=kernel)
    elif model_name == "Kernel Ridge":
        model = KernelRidge(alpha=alpha, degree=degree, kernel=kernel)
    elif model_name == "Linear Regression":
        model = LinearRegression()
    elif model_name == "Default - Auto":
        model = "Default Settings"
        return f"{model}"
    else:
        return "Model not supported."

    return f"{model_name} * {model.get_params()}"


# Define the Gradio layout
with gr.Blocks() as demo:
    log_df = pd.DataFrame(
        {"": [], 'Selected Models': [], 'Dataset': [], 'Task': [], 'Result': []}
    )
    state = gr.State({"log_df": log_df})
    with gr.Row():
        # Left Column
        with gr.Column():
            gr.HTML(
                '''
           <div style="background-color: #6A8EAE; color: #FFFFFF; padding: 10px;">
                <h3 style="color: #FFFFFF; margin: 0;font-size: 20px;"> Data & Model Setting</h3>
            </div>
            '''
            )
            # Dropdown menu for predefined datasets including "Custom Dataset" option
            dataset_selector = gr.Dropdown(
                label="Select Dataset",
                choices=list(predefined_datasets.keys()) + ["Custom Dataset"],
            )
            # Display the message for selected columns
            selected_columns_message = gr.Textbox(
                label="Selected Columns Info", visible=False
            )

            with gr.Accordion("Dataset Settings", open=True):
                # File upload options for custom dataset (train and test)
                dataset_name = gr.Textbox(label="Dataset Name", visible=False)
                train_file = gr.File(
                    label="Upload Custom Train Dataset",
                    file_types=[".csv"],
                    visible=False,
                )
                train_display = gr.Dataframe(
                    label="Train Dataset Preview (First 5 Rows)",
                    visible=False,
                    interactive=False,
                )

                test_file = gr.File(
                    label="Upload Custom Test Dataset",
                    file_types=[".csv"],
                    visible=False,
                )
                test_display = gr.Dataframe(
                    label="Test Dataset Preview (First 5 Rows)",
                    visible=False,
                    interactive=False,
                )

                # Predefined dataset displays
                predefined_display = gr.Dataframe(
                    label="Predefined Dataset Preview (First 5 Rows)",
                    visible=False,
                    interactive=False,
                )

                # Dropdowns for selecting input and output columns for the custom dataset
                input_column_selector = gr.Dropdown(
                    label="Select Input Column", choices=[], visible=False
                )
                output_column_selector = gr.Dropdown(
                    label="Select Output Column", choices=[], visible=False
                )

                # When a dataset is selected, show either file upload fields (for custom) or load predefined datasets
                dataset_selector.change(
                    handle_dataset_selection,
                    inputs=dataset_selector,
                    outputs=[
                        dataset_name,
                        train_file,
                        train_display,
                        test_file,
                        test_display,
                        predefined_display,
                        input_column_selector,
                        output_column_selector,
                    ],
                )

                # When a predefined dataset is selected, load its head and update column selectors
                dataset_selector.change(
                    load_predefined_dataset,
                    inputs=dataset_selector,
                    outputs=[
                        predefined_display,
                        input_column_selector,
                        output_column_selector,
                        selected_columns_message,
                    ],
                )

                # When a custom train file is uploaded, display its head and update column selectors
                train_file.change(
                    display_csv_head,
                    inputs=train_file,
                    outputs=[
                        train_display,
                        input_column_selector,
                        output_column_selector,
                    ],
                )

                # When a custom test file is uploaded, display its head
                test_file.change(
                    display_csv_head,
                    inputs=test_file,
                    outputs=[
                        test_display,
                        input_column_selector,
                        output_column_selector,
                    ],
                )

                dataset_selector.change(
                    set_dataname,
                    inputs=[dataset_name, dataset_selector],
                    outputs=dataset_name,
                )

                # Update the selected columns information when dropdown values are changed
                input_column_selector.change(
                    select_columns,
                    inputs=[
                        input_column_selector,
                        output_column_selector,
                        train_file,
                        test_file,
                        dataset_name,
                    ],
                    outputs=selected_columns_message,
                )

                output_column_selector.change(
                    select_columns,
                    inputs=[
                        input_column_selector,
                        output_column_selector,
                        train_file,
                        test_file,
                        dataset_name,
                    ],
                    outputs=selected_columns_message,
                )

            model_checkbox = gr.CheckboxGroup(
                choices=models_enabled, label="Select Model"
            )

            task_radiobutton = gr.Radio(
                choices=["Classification", "Regression"], label="Task Type"
            )

            ####### adding hyper parameter tuning ###########
            model_name = gr.Dropdown(
                [
                    "Default - Auto",
                    "XGBClassifier",
                    "SVR",
                    "Kernel Ridge",
                    "Linear Regression",
                ],
                label="Select Downstream Model",
            )
            with gr.Accordion("Downstream Hyperparameter Settings", open=True):
                # Create placeholders for hyperparameter components
                max_depth = gr.Slider(1, 20, step=1, visible=False, label="max_depth")
                n_estimators = gr.Slider(
                    100, 5000, step=100, visible=False, label="n_estimators"
                )
                alpha = gr.Slider(0.1, 10.0, step=0.1, visible=False, label="alpha")
                degree = gr.Slider(1, 20, step=1, visible=False, label="degree")
                kernel = gr.Dropdown(
                    choices=["rbf", "poly", "linear"], visible=False, label="kernel"
                )

                # Output textbox
                output = gr.Textbox(label="Loaded Parameters")

            # Dynamically show relevant hyperparameters based on selected model
            def update_hyperparameters(model_name):
                if model_name == "XGBClassifier":
                    return (
                        gr.update(visible=True),
                        gr.update(visible=True),
                        gr.update(visible=True),
                        gr.update(visible=False),
                        gr.update(visible=False),
                    )
                elif model_name == "SVR":
                    return (
                        gr.update(visible=False),
                        gr.update(visible=False),
                        gr.update(visible=False),
                        gr.update(visible=True),
                        gr.update(visible=True),
                    )
                elif model_name == "Kernel Ridge":
                    return (
                        gr.update(visible=False),
                        gr.update(visible=False),
                        gr.update(visible=True),
                        gr.update(visible=True),
                        gr.update(visible=True),
                    )
                elif model_name == "Linear Regression":
                    return (
                        gr.update(visible=False),
                        gr.update(visible=False),
                        gr.update(visible=False),
                        gr.update(visible=False),
                        gr.update(visible=False),
                    )
                elif model_name == "Default - Auto":
                    return (
                        gr.update(visible=False),
                        gr.update(visible=False),
                        gr.update(visible=False),
                        gr.update(visible=False),
                        gr.update(visible=False),
                    )

            # When model is selected, update which hyperparameters are visible
            model_name.change(
                update_hyperparameters,
                inputs=[model_name],
                outputs=[max_depth, n_estimators, alpha, degree, kernel],
            )

            # Submit button to create the model with selected hyperparameters
            submit_button = gr.Button("Create Downstream Model")

            # Function to handle model creation based on input parameters
            def on_submit(model_name, max_depth, n_estimators, alpha, degree, kernel):
                if model_name == "XGBClassifier":
                    return create_model(
                        model_name,
                        max_depth=max_depth,
                        n_estimators=n_estimators,
                        alpha=alpha,
                    )
                elif model_name == "SVR":
                    return create_model(model_name, degree=degree, kernel=kernel)
                elif model_name == "Kernel Ridge":
                    return create_model(
                        model_name, alpha=alpha, degree=degree, kernel=kernel
                    )
                elif model_name == "Linear Regression":
                    return create_model(model_name)
                elif model_name == "Default - Auto":
                    return create_model(model_name)

            # When the submit button is clicked, run the on_submit function
            submit_button.click(
                on_submit,
                inputs=[model_name, max_depth, n_estimators, alpha, degree, kernel],
                outputs=output,
            )
            ###### End of hyper param tuning #########

            fusion_radiobutton = gr.Radio(choices=fusion_available, label="Fusion Type")

            eval_button = gr.Button("Train downstream model")

        # Middle Column
        with gr.Column():
            gr.HTML(
                '''
           <div style="background-color: #8F9779; color: #FFFFFF; padding: 10px;">
                <h3 style="color: #FFFFFF; margin: 0;font-size: 20px;"> Downstream Task 1: Property Prediction</h3>
            </div>
            '''
            )
            eval_output = gr.Textbox(label="Train downstream model")

            plot_radio = gr.Radio(
                choices=["ROC-AUC", "Parity Plot", "Latent Space"],
                label="Select Plot Type",
            )
            plot_output = gr.Plot(label="Visualization")

            create_log = gr.Button("Store log")

            log_table = gr.Dataframe(
                value=log_df, label="Log of Selections and Results", interactive=False
            )

            eval_button.click(
                display_eval,
                inputs=[
                    model_checkbox,
                    selected_columns_message,
                    task_radiobutton,
                    output,
                    fusion_radiobutton,
                    state,
                ],
                outputs=eval_output,
            )

            plot_radio.change(
                display_plot, inputs=[plot_radio, state], outputs=plot_output
            )

            # Function to gather selected models
            def gather_selected_models(*models):
                selected = [model for model in models if model]
                return selected

            create_log.click(
                evaluate_and_log,
                inputs=[
                    model_checkbox,
                    dataset_name,
                    task_radiobutton,
                    eval_output,
                    state,
                ],
                outputs=log_table,
            )
        # Right Column
        with gr.Column():
            gr.HTML(
                '''
           <div style="background-color: #D2B48C; color: #FFFFFF; padding: 10px;">
                <h3 style="color: #FFFFFF; margin: 0;font-size: 20px;"> Downstream Task 2: Molecule Generation</h3>
            </div>
            '''
            )
            smiles_input = gr.Textbox(label="Input SMILES String")
            image_display = gr.Image(label="Molecule Image", height=250, width=250)
            # Show images for selection
            with gr.Accordion("Select from sample molecules", open=False):
                image_selector = gr.Radio(
                    choices=list(smiles_image_mapping.keys()),
                    label="Select from sample molecules",
                    value=None,
                )
                image_selector.change(load_image, image_selector, image_display)
            generate_button = gr.Button("Generate")
            gen_image_display = gr.Image(
                label="Generated Molecule Image", height=250, width=250
            )
            generated_output = gr.Textbox(label="Generated Output")
            property_table = gr.Dataframe(label="Molecular Properties Comparison")

            # Handle image selection
            image_selector.change(
                handle_image_selection,
                inputs=image_selector,
                outputs=[smiles_input, image_display],
            )
            smiles_input.change(
                smiles_to_image, inputs=smiles_input, outputs=image_display
            )

            # Generate button to display canonical SMILES and molecule image
            generate_button.click(
                generate_canonical,
                inputs=smiles_input,
                outputs=[property_table, generated_output, gen_image_display],
            )


if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0")