Spaces:
Running
Running
# Deep learning | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint as checkpoint | |
from torch.utils.data import DataLoader | |
from torch.nn.parallel import DistributedDataParallel as DDP | |
from fast_transformers.masking import LengthMask | |
# Standard library | |
from tqdm import tqdm | |
import pandas as pd | |
import numpy as np | |
import random | |
import os | |
class Trainer: | |
def __init__( | |
self, | |
model: torch.nn.Module, | |
train_data: DataLoader, | |
optimizer: torch.optim.Optimizer, | |
save_every: int, | |
save_checkpoint_path: str, | |
load_checkpoint_path: str, | |
config, | |
) -> None: | |
self.local_rank = int(os.environ["LOCAL_RANK"]) | |
self.global_rank = int(os.environ["RANK"]) | |
self.model = model.to(self.local_rank) | |
self.train_data = train_data | |
self.optimizer = optimizer | |
self.save_every = save_every | |
self.epochs_run = 0 | |
self.last_batch_idx = -1 | |
self.save_checkpoint_path = save_checkpoint_path | |
self.config = config | |
if os.path.exists(load_checkpoint_path): | |
print(f"Loading checkpoint at {load_checkpoint_path}...") | |
self._load_checkpoint(load_checkpoint_path) | |
self.model = DDP(self.model, device_ids=[self.local_rank]) | |
def _load_checkpoint(self, checkpoint_path): | |
opt_dict = None | |
loc = f"cuda:{self.local_rank}" | |
ckpt_dict = torch.load(checkpoint_path, map_location=loc) | |
if os.path.exists(os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt')): | |
opt_dict = torch.load(os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt'), map_location=loc) | |
self.model.load_state_dict(ckpt_dict["MODEL_STATE"]) | |
if opt_dict is not None: | |
self.optimizer.load_state_dict(opt_dict["OPTIMIZER_STATE"]) | |
print('Optimizer states restored!') | |
self.last_batch_idx = ckpt_dict["last_batch_idx"] if 'last_batch_idx' in ckpt_dict else -1 | |
self.epochs_run = ckpt_dict["EPOCHS_RUN"] + 1 if self.last_batch_idx == -1 else ckpt_dict["EPOCHS_RUN"] | |
# load RNG states each time the model and states are loaded from checkpoint | |
if 'rng' in ckpt_dict: | |
rng = ckpt_dict['rng'] | |
for key, value in rng.items(): | |
if key =='torch_state': | |
torch.set_rng_state(value.cpu()) | |
elif key =='cuda_state': | |
torch.cuda.set_rng_state(value.cpu()) | |
elif key =='numpy_state': | |
np.random.set_state(value) | |
elif key =='python_state': | |
random.setstate(value) | |
else: | |
print('unrecognized state') | |
print(f"Resuming training from checkpoint at Epoch {self.epochs_run}.") | |
def _save_checkpoint(self, epoch, config, last_idx): | |
# save RNG states each time the model and states are saved | |
out_dict = dict() | |
out_dict['torch_state'] = torch.get_rng_state() | |
out_dict['cuda_state'] = torch.cuda.get_rng_state() | |
if np: | |
out_dict['numpy_state'] = np.random.get_state() | |
if random: | |
out_dict['python_state'] = random.getstate() | |
# model states | |
ckpt_dict = { | |
"MODEL_STATE": self.model.module.state_dict(), | |
"EPOCHS_RUN": epoch, | |
"hparams": vars(config), | |
"last_batch_idx": last_idx, | |
"rng": out_dict | |
} | |
# optimizer states | |
opt_dict = { | |
"OPTIMIZER_STATE": self.optimizer.state_dict(), | |
} | |
if last_idx == -1: | |
filename = f'{str(self.model.module)}_{epoch}.pt' | |
else: | |
filename = f'{str(self.model.module)}_{last_idx}_{epoch}.pt' | |
torch.save(ckpt_dict, os.path.join(self.save_checkpoint_path, filename)) | |
torch.save(opt_dict, os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt')) | |
print(f"Epoch {epoch} | Training checkpoint saved at {os.path.join(self.save_checkpoint_path, filename)}.") | |
def train(self, max_epochs: int): | |
for epoch in range(self.epochs_run, max_epochs): | |
self._run_epoch(epoch) | |
if self.local_rank == 0: | |
self._save_checkpoint(epoch, self.config, last_idx=-1) | |
def _run_epoch(self, epoch): | |
print(f"[GPU{self.global_rank}] Epoch {epoch} | Batchsize: {self.config.n_batch} | Steps: {len(self.train_data)} | Last batch: {self.last_batch_idx}") | |
self.train_data.sampler.set_epoch(epoch) | |
loss_list = pd.Series() | |
for idx, data in enumerate(tqdm(self.train_data)): | |
# skip batches | |
if idx <= self.last_batch_idx: | |
continue | |
# run batch | |
bucket_idx_masked = data[0] | |
bucket_targets = data[1] | |
bucket_idx_not_masked = data[2] | |
loss = self._run_batch(bucket_idx_masked, bucket_targets, bucket_idx_not_masked) | |
torch.cuda.empty_cache() | |
# track loss | |
if self.local_rank == 0: | |
loss_list = pd.concat([loss_list, pd.Series([loss])], axis=0) | |
# checkpoint | |
if self.local_rank == 0 and idx % self.save_every == 0 and idx != 0: | |
self._save_checkpoint(epoch, self.config, idx) | |
# WARN: due to job limit time - save loss for each iter | |
loss_list.to_csv(os.path.join(self.config.save_checkpoint_path, f'training_loss_{idx}_epoch{epoch}.csv'), index=False) | |
loss_list = pd.Series() | |
self.last_batch_idx = -1 | |
if self.local_rank == 0: | |
loss_list.to_csv(os.path.join(self.config.save_checkpoint_path, f'training_loss_epoch{epoch}.csv'), index=False) | |
def _run_batch(self, bucket_idx_masked, bucket_targets, bucket_idx_not_masked): | |
raise NotImplementedError | |
class TrainerEncoderDecoder(Trainer): | |
def __init__( | |
self, | |
model: torch.nn.Module, | |
train_data: DataLoader, | |
optimizer: torch.optim.Optimizer, | |
save_every: int, | |
save_checkpoint_path: str, | |
load_checkpoint_path: str, | |
config, | |
) -> None: | |
super().__init__(model, train_data, optimizer, save_every, save_checkpoint_path, load_checkpoint_path, config) | |
self.criterionC = nn.CrossEntropyLoss(ignore_index=-100) | |
self.criterionR = nn.MSELoss() | |
self.optimE = self.optimizer[0] | |
self.optimD = self.optimizer[1] | |
self.ngpus_per_node = torch.cuda.device_count() | |
self.total_batches = len(self.train_data) | |
self.batch_thresh = int(self.total_batches - (self.total_batches * 0.05 * self.ngpus_per_node)) | |
print('batch_thresh:', self.batch_thresh) | |
def _load_checkpoint(self, checkpoint_path): | |
opt_dict = None | |
loc = f"cuda:{self.local_rank}" | |
ckpt_dict = torch.load(checkpoint_path, map_location=loc) | |
if os.path.exists(os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt')): | |
opt_dict = torch.load(os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt'), map_location=loc) | |
self.model.load_state_dict(ckpt_dict["MODEL_STATE"]) | |
if opt_dict is not None: | |
self.optimizer[0].load_state_dict(opt_dict["OPTIMIZER_STATE_ENCODER"]) | |
self.optimizer[1].load_state_dict(opt_dict["OPTIMIZER_STATE_DECODER"]) | |
print('Optimizer states restored!') | |
self.last_batch_idx = ckpt_dict["last_batch_idx"] if 'last_batch_idx' in ckpt_dict else -1 | |
self.epochs_run = ckpt_dict["EPOCHS_RUN"] + 1 if self.last_batch_idx == -1 else ckpt_dict["EPOCHS_RUN"] | |
# load RNG states each time the model and states are loaded from checkpoint | |
if 'rng' in ckpt_dict: | |
rng = ckpt_dict['rng'] | |
for key, value in rng.items(): | |
if key =='torch_state': | |
torch.set_rng_state(value.cpu()) | |
elif key =='cuda_state': | |
torch.cuda.set_rng_state(value.cpu()) | |
elif key =='numpy_state': | |
np.random.set_state(value) | |
elif key =='python_state': | |
random.setstate(value) | |
else: | |
print('unrecognized state') | |
print(f"Resuming training from checkpoint at Epoch {self.epochs_run}.") | |
def _save_checkpoint(self, epoch, config, last_idx): | |
# save RNG states each time the model and states are saved | |
out_dict = dict() | |
out_dict['torch_state'] = torch.get_rng_state() | |
out_dict['cuda_state'] = torch.cuda.get_rng_state() | |
if np: | |
out_dict['numpy_state'] = np.random.get_state() | |
if random: | |
out_dict['python_state'] = random.getstate() | |
# model states | |
ckpt_dict = { | |
"MODEL_STATE": self.model.module.state_dict(), | |
"EPOCHS_RUN": epoch, | |
"hparams": vars(config), | |
"last_batch_idx": last_idx, | |
"rng": out_dict | |
} | |
# optimizer states | |
opt_dict = { | |
"OPTIMIZER_STATE_ENCODER": self.optimizer[0].state_dict(), | |
"OPTIMIZER_STATE_DECODER": self.optimizer[1].state_dict(), | |
} | |
if last_idx == -1: | |
filename = f'{str(self.model.module)}_{epoch}.pt' | |
else: | |
filename = f'{str(self.model.module)}_{last_idx}_{epoch}.pt' | |
torch.save(ckpt_dict, os.path.join(self.save_checkpoint_path, filename)) | |
torch.save(opt_dict, os.path.join(self.save_checkpoint_path, 'OPTIMIZER_STATES.pt')) | |
print(f"Epoch {epoch} | Training checkpoint saved at {os.path.join(self.save_checkpoint_path, filename)}.") | |
def _run_epoch(self, epoch): | |
print(f"[GPU{self.global_rank}] Epoch {epoch} | Batchsize: {self.config.n_batch} | Steps: {len(self.train_data)}") | |
self.train_data.sampler.set_epoch(epoch) | |
loss_list = pd.DataFrame() | |
for idx, data in enumerate(tqdm(self.train_data)): | |
bucket_idx_masked = data[0] | |
bucket_targets = data[1] | |
bucket_idx_not_masked = data[2] | |
lossE, lossD = self._run_batch(idx, bucket_idx_masked, bucket_targets, bucket_idx_not_masked) | |
torch.cuda.empty_cache() | |
if self.local_rank == 0: | |
df = pd.DataFrame({ | |
'lossE': [lossE.cpu().item()], | |
'lossD': [lossD.cpu().item()], | |
}) | |
loss_list = pd.concat([loss_list, df], axis=0) | |
if self.local_rank == 0: | |
loss_list.to_csv(os.path.join(self.config.save_checkpoint_path, f'training_loss_epoch{epoch}.csv'), index=False) | |
def custom(self, module): | |
def custom_forward(*inputs): | |
inputs = module(inputs[0]) | |
return inputs | |
return custom_forward | |
def _run_batch(self, batch_idx, bucket_idx_masked, bucket_targets, bucket_idx_not_masked): | |
self.optimE.zero_grad(set_to_none=True) | |
self.optimD.zero_grad(set_to_none=True) | |
can_train_encoder = (batch_idx + 1) <= self.batch_thresh | |
can_train_decoder = (batch_idx + 1) > self.batch_thresh | |
padding_idx = 2 | |
errorE = torch.zeros(1).to(self.local_rank) | |
errorD = torch.zeros(1).to(self.local_rank) | |
errorE_tmp = .0 | |
errorD_tmp = .0 | |
for chunk in range(len(bucket_idx_masked)): | |
idx_masked = bucket_idx_masked[chunk].to(self.local_rank) | |
targets = bucket_targets[chunk].to(self.local_rank) | |
idx_not_masked = bucket_idx_not_masked[chunk] | |
idx_not_masked = list(map(lambda x: F.pad(x, pad=(0, self.config.max_len - x.shape[0]), value=2).unsqueeze(0), idx_not_masked)) | |
idx_not_masked = torch.cat(idx_not_masked, dim=0).to(self.local_rank) | |
mask = (idx_masked != padding_idx) | |
########### | |
# Encoder # | |
########### | |
if can_train_encoder: | |
for param in self.model.module.encoder.parameters(): | |
param.requires_grad = True | |
for param in self.model.module.decoder.parameters(): | |
param.requires_grad = False | |
# encoder forward | |
x = self.model.module.encoder.tok_emb(idx_masked) | |
x = self.model.module.encoder.drop(x) | |
x = checkpoint.checkpoint(self.custom(self.model.module.encoder.blocks), x) | |
logits = self.model.module.encoder.lang_model(x) | |
# loss function | |
logits = logits.view(-1, logits.size(-1)) | |
targets = targets.view(-1) | |
errorE_tmp = self.criterionC(logits, targets) / len(bucket_idx_masked) | |
if chunk < len(bucket_idx_masked)-1: | |
errorE_tmp.backward() | |
errorE += errorE_tmp.detach() | |
else: | |
errorE += errorE_tmp | |
########### | |
# Decoder # | |
########### | |
if can_train_decoder: | |
for param in self.model.module.encoder.parameters(): | |
param.requires_grad = False | |
for param in self.model.module.decoder.parameters(): | |
param.requires_grad = True | |
self.model.module.encoder.eval() | |
# encoder forward | |
with torch.no_grad(): | |
true_set, true_cte = self.model.module.encoder(idx_masked, mask=mask, inference=True) | |
# add padding | |
input_mask_expanded = mask.unsqueeze(-1).expand(true_cte.size()).float() | |
mask_embeddings = (true_cte * input_mask_expanded) | |
true_cte = F.pad(mask_embeddings, pad=(0, 0, 0, self.config.max_len - mask_embeddings.shape[1]), value=0) | |
true_cte = true_cte.view(-1, self.config.max_len*self.config.n_embd) | |
# decoder forward | |
pred_set, pred_ids = self.model.module.decoder(true_cte) | |
# losses | |
pred_ids = pred_ids.view(-1, pred_ids.size(-1)) | |
true_ids = idx_not_masked.view(-1) | |
error_ids = self.criterionC(pred_ids, true_ids) / len(bucket_idx_masked) | |
error_set = self.criterionR(pred_set, true_set) / len(bucket_idx_masked) | |
errorD_tmp = error_ids + error_set | |
if chunk < len(bucket_idx_masked)-1: | |
errorD_tmp.backward() | |
errorD += errorD_tmp.detach() | |
else: | |
errorD += errorD_tmp | |
if can_train_decoder: | |
errorD.backward() | |
self.optimD.step() | |
elif can_train_encoder: | |
errorE.backward() | |
self.optimE.step() | |
if self.local_rank == 0: | |
print(f'LossE: {errorE.item()} | LossD: {errorD.item()}') | |
return errorE, errorD | |
class TrainerDirectDecoder(Trainer): | |
def __init__( | |
self, | |
model: torch.nn.Module, | |
train_data: DataLoader, | |
optimizer: torch.optim.Optimizer, | |
save_every: int, | |
save_checkpoint_path: str, | |
load_checkpoint_path: str, | |
config, | |
) -> None: | |
super().__init__(model, train_data, optimizer, save_every, save_checkpoint_path, load_checkpoint_path, config) | |
self.criterionC = nn.CrossEntropyLoss(ignore_index=-100) | |
self.criterionR = nn.MSELoss() | |
def custom(self, module): | |
def custom_forward(*inputs): | |
inputs = module(inputs[0], length_mask=inputs[1]) | |
return inputs | |
return custom_forward | |
def _run_batch(self, bucket_idx_masked, bucket_targets, bucket_idx_not_masked): | |
padding_idx = 2 | |
error = torch.zeros(1).to(self.local_rank) | |
error_tmp = .0 | |
self.optimizer.zero_grad(set_to_none=True) | |
for chunk in range(len(bucket_idx_masked)): | |
idx_masked = bucket_idx_masked[chunk].to(self.local_rank) | |
targets = bucket_targets[chunk].to(self.local_rank) | |
idx_not_masked = bucket_idx_not_masked[chunk] | |
idx_not_masked = list(map(lambda x: F.pad(x, pad=(0, self.config.max_len - x.shape[0]), value=2).unsqueeze(0), idx_not_masked)) | |
idx_not_masked = torch.cat(idx_not_masked, dim=0).to(self.local_rank) | |
mask = (idx_masked != padding_idx) | |
# encoder forward | |
x = self.model.module.encoder.tok_emb(idx_masked) | |
x = self.model.module.encoder.drop(x) | |
x = checkpoint.checkpoint(self.custom(self.model.module.encoder.blocks), x, LengthMask(mask.sum(-1), max_len=idx_masked.shape[1])) | |
# mean pooling | |
input_masked_expanded = mask.unsqueeze(-1).expand(x.size()).float() | |
sum_embeddings = torch.sum(x*input_masked_expanded, 1) | |
sum_mask = torch.clamp(input_masked_expanded.sum(1), min=1e-9) | |
true_set = sum_embeddings/sum_mask | |
true_cte = x | |
del x | |
torch.cuda.empty_cache() | |
# add padding | |
input_mask_expanded = mask.unsqueeze(-1).expand(true_cte.size()).float() | |
mask_embeddings = (true_cte * input_mask_expanded) | |
true_cte = F.pad(mask_embeddings, pad=(0, 0, 0, self.config.max_len - mask_embeddings.shape[1]), value=0) | |
true_cte = true_cte.view(-1, self.config.max_len*self.config.n_embd) | |
# decoder forward | |
pred_set, pred_ids = self.model.module.decoder(true_cte) | |
# losses | |
pred_ids = pred_ids.view(-1, pred_ids.size(-1)) | |
true_ids = idx_not_masked.view(-1) | |
error_ids = self.criterionC(pred_ids, true_ids) / len(bucket_idx_masked) | |
error_set = self.criterionR(pred_set, true_set) / len(bucket_idx_masked) | |
error_tmp = error_ids + error_set | |
if chunk < len(bucket_idx_masked)-1: | |
error_tmp.backward() | |
error += error_tmp.detach() | |
else: | |
error += error_tmp | |
torch.cuda.empty_cache() | |
error.backward() | |
self.optimizer.step() | |
if self.local_rank == 0: | |
print(f'Loss: {error.item()}') | |
return error.item() | |