File size: 7,707 Bytes
897b38c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import streamlit as st
import yfinance as yf
import plotly.graph_objs as go
from plotly.subplots import make_subplots
from crew_groq import crew_creator
from dotenv import load_dotenv
load_dotenv()

st.set_page_config(layout="wide", page_title="Finance Agent", initial_sidebar_state="expanded")
st.sidebar.markdown('<p class="medium-font">Configuration</p>', unsafe_allow_html=True)

st.markdown("""

<div class="analysis-card">

    <h2 class="analysis-title">AI-Agents Finance Analyst Platform</h2>

    <p class="analysis-content">

        Welcome to my cutting-edge stock analysis platform, leveraging Artificial Intelligence and Large Language Models (LLMs) to deliver professional-grade investment insights. Our system offers:

    </p>

     <ul class="analysis-list">

        <li class="analysis-list-item">Comprehensive Data Analysis on stocks, and investing.</li>

        <li class="analysis-list-item">In-depth fundamental and technical analyses</li>

        <li class="analysis-list-item">Extensive web and news research integration</li>

        <li class="analysis-list-item">Customizable analysis parameters including time frames and specific indicators</li>

    </ul>

    <p class="analysis-content">

        Users can obtain a detailed, AI-generated analysis report by simply selecting a stock symbol, specifying a time period, and choosing desired analysis indicators. This platform aims to empower investors with data-driven, AI-enhanced decision-making tools for the complex world of stock market investments.

    </p>

    <p class="analysis-content">

        Please note, this analysis is for informational purposes only and should not be construed as financial or investment advice.

    </p>

        <p class="divider-content">

        ----------------------------------------------------------------------------------------------------------------------------

    </p>

</div>

""", unsafe_allow_html=True)

# Model selection
# model_option = st.sidebar.selectbox("Select LLM Model", ['Llama 3 8B', 'Llama 3.1 70B', 'Llama 3.1 8B'])
# groq_api_key = st.sidebar.text_input("Enter Groq API Key", type="password")

stock_symbol = st.sidebar.text_input("Enter Stock Symbol", value="AAPL")
time_period = st.sidebar.selectbox("Select Time Period", ['1mo', '3mo', '6mo', '1y', '2y', '5y', 'max'])
indicators = st.sidebar.multiselect("Select Indicators", ['Moving Averages', 'Volume', 'RSI', 'MACD'])
analyze_button = st.sidebar.button("📊 Analyze Stock", help="Click to start the stock analysis")

# Initialize session state
if 'analyzed' not in st.session_state:
    st.session_state.analyzed = False
    st.session_state.stock_info = None
    st.session_state.stock_data = None
    st.session_state.result_file_path = None

def get_stock_data(stock_symbol, period='1y'):
    return yf.download(stock_symbol, period=period)

def plot_stock_chart(stock_data, indicators):
    fig = make_subplots(rows=3, cols=1, shared_xaxes=True, vertical_spacing=0.05, row_heights=[0.6, 0.2, 0.2])

    # Main price chart
    fig.add_trace(go.Candlestick(x=stock_data.index,
                                 open=stock_data['Open'],
                                 high=stock_data['High'],
                                 low=stock_data['Low'],
                                 close=stock_data['Close'],
                                 name='Price'),
                  row=1, col=1)

    # Add selected indicators
    if 'Moving Averages' in indicators:
        fig.add_trace(go.Scatter(x=stock_data.index, y=stock_data['Close'].rolling(window=50).mean(), name='50 MA', line=dict(color='orange')), row=1, col=1)
        fig.add_trace(go.Scatter(x=stock_data.index, y=stock_data['Close'].rolling(window=200).mean(), name='200 MA', line=dict(color='red')), row=1, col=1)

    if 'Volume' in indicators:
        fig.add_trace(go.Bar(x=stock_data.index, y=stock_data['Volume'], name='Volume'), row=2, col=1)

    if 'RSI' in indicators:
        delta = stock_data['Close'].diff()
        gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
        loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
        rs = gain / loss
        rsi = 100 - (100 / (1 + rs))
        fig.add_trace(go.Scatter(x=stock_data.index, y=rsi, name='RSI'), row=3, col=1)

    if 'MACD' in indicators:
        ema12 = stock_data['Close'].ewm(span=12, adjust=False).mean()
        ema26 = stock_data['Close'].ewm(span=26, adjust=False).mean()
        macd = ema12 - ema26
        signal = macd.ewm(span=9, adjust=False).mean()
        fig.add_trace(go.Scatter(x=stock_data.index, y=macd, name='MACD'), row=3, col=1)
        fig.add_trace(go.Scatter(x=stock_data.index, y=signal, name='Signal'), row=3, col=1)

    fig.update_layout(
        title='Stock Analysis',
        yaxis_title='Price',
        xaxis_rangeslider_visible=False,
        height=800,
        showlegend=True
    )

    fig.update_xaxes(
        rangeselector=dict(
            buttons=list([
                dict(count=1, label="1m", step="month", stepmode="backward"),
                dict(count=6, label="6m", step="month", stepmode="backward"),
                dict(count=1, label="YTD", step="year", stepmode="todate"),
                dict(count=1, label="1y", step="year", stepmode="backward"),
                dict(step="all")
            ])
        ),
        rangeslider=dict(visible=False),
        type="date"
    )

    return fig

if analyze_button:
    st.session_state.analyzed = False  # Reset analyzed state
    st.snow()

    # Fetch stock info and data
    with st.spinner(f"Fetching data for {stock_symbol}..."):
        stock = yf.Ticker(stock_symbol)
        st.session_state.stock_info = stock.info
        st.session_state.stock_data = get_stock_data(stock_symbol, period=time_period)

    # Create and run the crew
    with st.spinner("Running analysis, please wait..."):
        
        st.session_state.result_file_path = crew_creator(stock_symbol,
                                                        #   model_option, groq_api_key
                                                        )
    
    st.session_state.analyzed = True

# Display stock info if available
if st.session_state.stock_info:
    st.markdown('<p class="medium-font">Stock Information</p>', unsafe_allow_html=True)
    info = st.session_state.stock_info
    col1, col2, col3 = st.columns(3)
    with col1:
        st.markdown(f"**Company Name:** {info.get('longName', 'N/A')}")
        st.markdown(f"**Sector:** {info.get('sector', 'N/A')}")
    with col2:
        st.markdown(f"**Industry:** {info.get('industry', 'N/A')}")
        st.markdown(f"**Country:** {info.get('country', 'N/A')}")
    with col3:
        st.markdown(f"**Current Price:** ${info.get('currentPrice', 'N/A')}")
        st.markdown(f"**Market Cap:** ${info.get('marketCap', 'N/A')}")

# Display CrewAI result if available
if st.session_state.result_file_path:
    st.markdown('<p class="medium-font">Analysis Result</p>', unsafe_allow_html=True)
        
    # with open(st.session_state.result_file_path, 'r') as file:
    #     result = file.read()
        
    st.markdown(st.session_state.result_file_path)

# Display chart
if st.session_state.analyzed and st.session_state.stock_data is not None:
    st.markdown('<p class="medium-font">Interactive Stock Chart</p>', unsafe_allow_html=True)
    st.plotly_chart(plot_stock_chart(st.session_state.stock_data, indicators), use_container_width=True)


st.markdown("---")
st.markdown('<p class="small-font">Crafted by base234 </p>', unsafe_allow_html=True)