File size: 7,707 Bytes
897b38c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import streamlit as st
import yfinance as yf
import plotly.graph_objs as go
from plotly.subplots import make_subplots
from crew_groq import crew_creator
from dotenv import load_dotenv
load_dotenv()
st.set_page_config(layout="wide", page_title="Finance Agent", initial_sidebar_state="expanded")
st.sidebar.markdown('<p class="medium-font">Configuration</p>', unsafe_allow_html=True)
st.markdown("""
<div class="analysis-card">
<h2 class="analysis-title">AI-Agents Finance Analyst Platform</h2>
<p class="analysis-content">
Welcome to my cutting-edge stock analysis platform, leveraging Artificial Intelligence and Large Language Models (LLMs) to deliver professional-grade investment insights. Our system offers:
</p>
<ul class="analysis-list">
<li class="analysis-list-item">Comprehensive Data Analysis on stocks, and investing.</li>
<li class="analysis-list-item">In-depth fundamental and technical analyses</li>
<li class="analysis-list-item">Extensive web and news research integration</li>
<li class="analysis-list-item">Customizable analysis parameters including time frames and specific indicators</li>
</ul>
<p class="analysis-content">
Users can obtain a detailed, AI-generated analysis report by simply selecting a stock symbol, specifying a time period, and choosing desired analysis indicators. This platform aims to empower investors with data-driven, AI-enhanced decision-making tools for the complex world of stock market investments.
</p>
<p class="analysis-content">
Please note, this analysis is for informational purposes only and should not be construed as financial or investment advice.
</p>
<p class="divider-content">
----------------------------------------------------------------------------------------------------------------------------
</p>
</div>
""", unsafe_allow_html=True)
# Model selection
# model_option = st.sidebar.selectbox("Select LLM Model", ['Llama 3 8B', 'Llama 3.1 70B', 'Llama 3.1 8B'])
# groq_api_key = st.sidebar.text_input("Enter Groq API Key", type="password")
stock_symbol = st.sidebar.text_input("Enter Stock Symbol", value="AAPL")
time_period = st.sidebar.selectbox("Select Time Period", ['1mo', '3mo', '6mo', '1y', '2y', '5y', 'max'])
indicators = st.sidebar.multiselect("Select Indicators", ['Moving Averages', 'Volume', 'RSI', 'MACD'])
analyze_button = st.sidebar.button("📊 Analyze Stock", help="Click to start the stock analysis")
# Initialize session state
if 'analyzed' not in st.session_state:
st.session_state.analyzed = False
st.session_state.stock_info = None
st.session_state.stock_data = None
st.session_state.result_file_path = None
def get_stock_data(stock_symbol, period='1y'):
return yf.download(stock_symbol, period=period)
def plot_stock_chart(stock_data, indicators):
fig = make_subplots(rows=3, cols=1, shared_xaxes=True, vertical_spacing=0.05, row_heights=[0.6, 0.2, 0.2])
# Main price chart
fig.add_trace(go.Candlestick(x=stock_data.index,
open=stock_data['Open'],
high=stock_data['High'],
low=stock_data['Low'],
close=stock_data['Close'],
name='Price'),
row=1, col=1)
# Add selected indicators
if 'Moving Averages' in indicators:
fig.add_trace(go.Scatter(x=stock_data.index, y=stock_data['Close'].rolling(window=50).mean(), name='50 MA', line=dict(color='orange')), row=1, col=1)
fig.add_trace(go.Scatter(x=stock_data.index, y=stock_data['Close'].rolling(window=200).mean(), name='200 MA', line=dict(color='red')), row=1, col=1)
if 'Volume' in indicators:
fig.add_trace(go.Bar(x=stock_data.index, y=stock_data['Volume'], name='Volume'), row=2, col=1)
if 'RSI' in indicators:
delta = stock_data['Close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
rs = gain / loss
rsi = 100 - (100 / (1 + rs))
fig.add_trace(go.Scatter(x=stock_data.index, y=rsi, name='RSI'), row=3, col=1)
if 'MACD' in indicators:
ema12 = stock_data['Close'].ewm(span=12, adjust=False).mean()
ema26 = stock_data['Close'].ewm(span=26, adjust=False).mean()
macd = ema12 - ema26
signal = macd.ewm(span=9, adjust=False).mean()
fig.add_trace(go.Scatter(x=stock_data.index, y=macd, name='MACD'), row=3, col=1)
fig.add_trace(go.Scatter(x=stock_data.index, y=signal, name='Signal'), row=3, col=1)
fig.update_layout(
title='Stock Analysis',
yaxis_title='Price',
xaxis_rangeslider_visible=False,
height=800,
showlegend=True
)
fig.update_xaxes(
rangeselector=dict(
buttons=list([
dict(count=1, label="1m", step="month", stepmode="backward"),
dict(count=6, label="6m", step="month", stepmode="backward"),
dict(count=1, label="YTD", step="year", stepmode="todate"),
dict(count=1, label="1y", step="year", stepmode="backward"),
dict(step="all")
])
),
rangeslider=dict(visible=False),
type="date"
)
return fig
if analyze_button:
st.session_state.analyzed = False # Reset analyzed state
st.snow()
# Fetch stock info and data
with st.spinner(f"Fetching data for {stock_symbol}..."):
stock = yf.Ticker(stock_symbol)
st.session_state.stock_info = stock.info
st.session_state.stock_data = get_stock_data(stock_symbol, period=time_period)
# Create and run the crew
with st.spinner("Running analysis, please wait..."):
st.session_state.result_file_path = crew_creator(stock_symbol,
# model_option, groq_api_key
)
st.session_state.analyzed = True
# Display stock info if available
if st.session_state.stock_info:
st.markdown('<p class="medium-font">Stock Information</p>', unsafe_allow_html=True)
info = st.session_state.stock_info
col1, col2, col3 = st.columns(3)
with col1:
st.markdown(f"**Company Name:** {info.get('longName', 'N/A')}")
st.markdown(f"**Sector:** {info.get('sector', 'N/A')}")
with col2:
st.markdown(f"**Industry:** {info.get('industry', 'N/A')}")
st.markdown(f"**Country:** {info.get('country', 'N/A')}")
with col3:
st.markdown(f"**Current Price:** ${info.get('currentPrice', 'N/A')}")
st.markdown(f"**Market Cap:** ${info.get('marketCap', 'N/A')}")
# Display CrewAI result if available
if st.session_state.result_file_path:
st.markdown('<p class="medium-font">Analysis Result</p>', unsafe_allow_html=True)
# with open(st.session_state.result_file_path, 'r') as file:
# result = file.read()
st.markdown(st.session_state.result_file_path)
# Display chart
if st.session_state.analyzed and st.session_state.stock_data is not None:
st.markdown('<p class="medium-font">Interactive Stock Chart</p>', unsafe_allow_html=True)
st.plotly_chart(plot_stock_chart(st.session_state.stock_data, indicators), use_container_width=True)
st.markdown("---")
st.markdown('<p class="small-font">Crafted by base234 </p>', unsafe_allow_html=True) |