import streamlit as st import yfinance as yf import plotly.graph_objs as go from plotly.subplots import make_subplots from crew_groq import crew_creator from dotenv import load_dotenv load_dotenv() st.set_page_config(layout="wide", page_title="Finance Agent", initial_sidebar_state="expanded") st.sidebar.markdown('

Configuration

', unsafe_allow_html=True) st.markdown("""

AI-Agents Finance Analyst Platform

Welcome to my cutting-edge stock analysis platform, leveraging Artificial Intelligence and Large Language Models (LLMs) to deliver professional-grade investment insights. Our system offers:

Users can obtain a detailed, AI-generated analysis report by simply selecting a stock symbol, specifying a time period, and choosing desired analysis indicators. This platform aims to empower investors with data-driven, AI-enhanced decision-making tools for the complex world of stock market investments.

Please note, this analysis is for informational purposes only and should not be construed as financial or investment advice.

----------------------------------------------------------------------------------------------------------------------------

""", unsafe_allow_html=True) # Model selection # model_option = st.sidebar.selectbox("Select LLM Model", ['Llama 3 8B', 'Llama 3.1 70B', 'Llama 3.1 8B']) # groq_api_key = st.sidebar.text_input("Enter Groq API Key", type="password") stock_symbol = st.sidebar.text_input("Enter Stock Symbol", value="AAPL") time_period = st.sidebar.selectbox("Select Time Period", ['1mo', '3mo', '6mo', '1y', '2y', '5y', 'max']) indicators = st.sidebar.multiselect("Select Indicators", ['Moving Averages', 'Volume', 'RSI', 'MACD']) analyze_button = st.sidebar.button("📊 Analyze Stock", help="Click to start the stock analysis") # Initialize session state if 'analyzed' not in st.session_state: st.session_state.analyzed = False st.session_state.stock_info = None st.session_state.stock_data = None st.session_state.result_file_path = None def get_stock_data(stock_symbol, period='1y'): return yf.download(stock_symbol, period=period) def plot_stock_chart(stock_data, indicators): fig = make_subplots(rows=3, cols=1, shared_xaxes=True, vertical_spacing=0.05, row_heights=[0.6, 0.2, 0.2]) # Main price chart fig.add_trace(go.Candlestick(x=stock_data.index, open=stock_data['Open'], high=stock_data['High'], low=stock_data['Low'], close=stock_data['Close'], name='Price'), row=1, col=1) # Add selected indicators if 'Moving Averages' in indicators: fig.add_trace(go.Scatter(x=stock_data.index, y=stock_data['Close'].rolling(window=50).mean(), name='50 MA', line=dict(color='orange')), row=1, col=1) fig.add_trace(go.Scatter(x=stock_data.index, y=stock_data['Close'].rolling(window=200).mean(), name='200 MA', line=dict(color='red')), row=1, col=1) if 'Volume' in indicators: fig.add_trace(go.Bar(x=stock_data.index, y=stock_data['Volume'], name='Volume'), row=2, col=1) if 'RSI' in indicators: delta = stock_data['Close'].diff() gain = (delta.where(delta > 0, 0)).rolling(window=14).mean() loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean() rs = gain / loss rsi = 100 - (100 / (1 + rs)) fig.add_trace(go.Scatter(x=stock_data.index, y=rsi, name='RSI'), row=3, col=1) if 'MACD' in indicators: ema12 = stock_data['Close'].ewm(span=12, adjust=False).mean() ema26 = stock_data['Close'].ewm(span=26, adjust=False).mean() macd = ema12 - ema26 signal = macd.ewm(span=9, adjust=False).mean() fig.add_trace(go.Scatter(x=stock_data.index, y=macd, name='MACD'), row=3, col=1) fig.add_trace(go.Scatter(x=stock_data.index, y=signal, name='Signal'), row=3, col=1) fig.update_layout( title='Stock Analysis', yaxis_title='Price', xaxis_rangeslider_visible=False, height=800, showlegend=True ) fig.update_xaxes( rangeselector=dict( buttons=list([ dict(count=1, label="1m", step="month", stepmode="backward"), dict(count=6, label="6m", step="month", stepmode="backward"), dict(count=1, label="YTD", step="year", stepmode="todate"), dict(count=1, label="1y", step="year", stepmode="backward"), dict(step="all") ]) ), rangeslider=dict(visible=False), type="date" ) return fig if analyze_button: st.session_state.analyzed = False # Reset analyzed state st.snow() # Fetch stock info and data with st.spinner(f"Fetching data for {stock_symbol}..."): stock = yf.Ticker(stock_symbol) st.session_state.stock_info = stock.info st.session_state.stock_data = get_stock_data(stock_symbol, period=time_period) # Create and run the crew with st.spinner("Running analysis, please wait..."): st.session_state.result_file_path = crew_creator(stock_symbol, # model_option, groq_api_key ) st.session_state.analyzed = True # Display stock info if available if st.session_state.stock_info: st.markdown('

Stock Information

', unsafe_allow_html=True) info = st.session_state.stock_info col1, col2, col3 = st.columns(3) with col1: st.markdown(f"**Company Name:** {info.get('longName', 'N/A')}") st.markdown(f"**Sector:** {info.get('sector', 'N/A')}") with col2: st.markdown(f"**Industry:** {info.get('industry', 'N/A')}") st.markdown(f"**Country:** {info.get('country', 'N/A')}") with col3: st.markdown(f"**Current Price:** ${info.get('currentPrice', 'N/A')}") st.markdown(f"**Market Cap:** ${info.get('marketCap', 'N/A')}") # Display CrewAI result if available if st.session_state.result_file_path: st.markdown('

Analysis Result

', unsafe_allow_html=True) # with open(st.session_state.result_file_path, 'r') as file: # result = file.read() st.markdown(st.session_state.result_file_path) # Display chart if st.session_state.analyzed and st.session_state.stock_data is not None: st.markdown('

Interactive Stock Chart

', unsafe_allow_html=True) st.plotly_chart(plot_stock_chart(st.session_state.stock_data, indicators), use_container_width=True) st.markdown("---") st.markdown('

Crafted by base234

', unsafe_allow_html=True)