itsJB commited on
Commit
2ddcbaa
·
verified ·
1 Parent(s): 7baf8c1

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +90 -0
app.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import requests
3
+ import json
4
+ from langchain.vectorstores import Vectara
5
+ from sentence_transformers import CrossEncoder
6
+
7
+ # Input your API keys
8
+ vectara_customer_id = "3939498282"
9
+ vectara_corpus_id = 2
10
+ vectara_api_key = 'zqt_6s_5KqwCCxK5tosYGbpSie8n2-hO7LdlxBWUBA'
11
+
12
+ # Initialize Vectara
13
+ vectara_instance = Vectara(
14
+ vectara_customer_id='3939498282',
15
+ vectara_corpus_id=2,
16
+ vectara_api_key='zqt_Y3kD9bueJq3QO5t_FISVQLmgTWMDhzgMgK9Isw',
17
+ )
18
+
19
+ # Model initialization
20
+ model = CrossEncoder('vectara/hallucination_evaluation_model')
21
+
22
+ # Streamlit app
23
+ st.title('RAG-Based App')
24
+
25
+ # Input message from the user
26
+ message = st.text_input('Enter your message')
27
+
28
+ # Button to trigger the processing
29
+ if st.button('Process'):
30
+ # Processing logic
31
+ corpus_key = [
32
+ {
33
+ "customerId": vectara_customer_id,
34
+ "corpusId": vectara_corpus_id,
35
+ "lexicalInterpolationConfig": {"lambda": 0.025},
36
+ }
37
+ ]
38
+ data = {
39
+ "query": [
40
+ {
41
+ "query": message,
42
+ "start": 0,
43
+ "numResults": 10,
44
+ "contextConfig": {
45
+ "sentencesBefore": 2,
46
+ "sentencesAfter": 2,
47
+ },
48
+ "corpusKey": corpus_key,
49
+ "summary": [
50
+ {
51
+ "responseLang": "eng",
52
+ "maxSummarizedResults": 5,
53
+ }
54
+ ]
55
+ }
56
+ ]
57
+ }
58
+
59
+ headers = {
60
+ "x-api-key": vectara_api_key,
61
+ "customer-id": vectara_customer_id,
62
+ "Content-Type": "application/json",
63
+ }
64
+ response = requests.post(
65
+ headers=headers,
66
+ url="https://api.vectara.io/v1/query",
67
+ data=json.dumps(data),
68
+ )
69
+ if response.status_code != 200:
70
+ st.error("Query failed")
71
+ else:
72
+ result = response.json()
73
+ responses = result["responseSet"][0]["response"]
74
+ summary = result["responseSet"][0]["summary"][0]["text"]
75
+
76
+ res = [[r['text'], r['score']] for r in responses]
77
+ texts = [r[0] for r in res[:5]]
78
+ scores = [model.predict([text, summary]) for text in texts]
79
+
80
+ text_elements = []
81
+ docs = vectara_instance.similarity_search(message)
82
+ for source_idx, source_doc in enumerate(docs[:5]):
83
+ source_name = f"Source {source_idx + 1}"
84
+ text_elements.append(source_doc.page_content)
85
+
86
+ ans = f"{summary}\n HHEM Scores: {scores}"
87
+ st.text(ans)
88
+ st.text("Sources:")
89
+ for text in text_elements:
90
+ st.text(text)