Spaces:
Sleeping
Sleeping
from huggingface_hub import InferenceClient | |
import gradio as gr | |
from langchain_community.tools import DuckDuckGoSearchRun | |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
# Initialize DuckDuckGo search tool | |
duckduckgo_search = DuckDuckGoSearchRun() | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def generate(prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) | |
# Generate response using model | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
# Yield model's response first | |
yield output | |
# Now, perform DuckDuckGo search and yield results | |
search_result = duckduckgo_search.run(prompt) | |
if search_result: | |
yield search_result | |
else: | |
yield "Sorry, I couldn't find any relevant information." | |
additional_inputs = [ | |
gr.Textbox( | |
label="System Prompt", | |
max_lines=1, | |
interactive=True, | |
), | |
gr.Slider( | |
label="Temperature", | |
value=0.9, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=256, | |
minimum=0, | |
maximum=1048, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
] | |
examples = [ | |
["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None], | |
["What are some best tourist places to visit in Lajpat nagar, Delhi?", None, None, None, None, None], | |
["Ronaldo or Messi?", None, None, None, None, None], | |
["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None], | |
] | |
gr.ChatInterface( | |
fn=generate, | |
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), | |
additional_inputs=additional_inputs, | |
title="π€ friday2.0 π€ WELCOME TO OPEN-SOURCE FREEDOM", | |
examples=examples, | |
concurrency_limit=20, | |
).launch(show_api=False, share=True) |