from huggingface_hub import InferenceClient import gradio as gr from langchain_community.tools import DuckDuckGoSearchRun client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") # Initialize DuckDuckGo search tool duckduckgo_search = DuckDuckGoSearchRun() def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate(prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) # Generate response using model stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text # Yield model's response first yield output # Now, perform DuckDuckGo search and yield results search_result = duckduckgo_search.run(prompt) if search_result: yield search_result else: yield "Sorry, I couldn't find any relevant information." additional_inputs = [ gr.Textbox( label="System Prompt", max_lines=1, interactive=True, ), gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] examples = [ ["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None], ["What are some best tourist places to visit in Lajpat nagar, Delhi?", None, None, None, None, None], ["Ronaldo or Messi?", None, None, None, None, None], ["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None], ] gr.ChatInterface( fn=generate, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), additional_inputs=additional_inputs, title="🤗 friday2.0 🤗 WELCOME TO OPEN-SOURCE FREEDOM", examples=examples, concurrency_limit=20, ).launch(show_api=False, share=True)