Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Run the script and open the link in the browser.
|
2 |
+
|
3 |
+
import os
|
4 |
+
import gradio as gr
|
5 |
+
import streamlit as st
|
6 |
+
import torch
|
7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
8 |
+
|
9 |
+
# scratch with latbert tokenizer
|
10 |
+
CHECKPOINT_PATH= 'scratch_2-nodes_tokenizer_latbert-original_packing_fcocchi/model.safetensors'
|
11 |
+
CHECKPOINT_PATH= 'itserr/latin_llm_alpha'
|
12 |
+
|
13 |
+
print(f"Loading model from: {CHECKPOINT_PATH}")
|
14 |
+
#tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_PATH, token=st.secrets["HF_TOKEN"])
|
15 |
+
#model = AutoModelForCausalLM.from_pretrained(CHECKPOINT_PATH, token=st.secrets["HF_TOKEN"])
|
16 |
+
|
17 |
+
description="""
|
18 |
+
This is a Latin Language Model (LLM) based on GPT-2 and it was trained on a large corpus of Latin texts and can generate text in Latin.
|
19 |
+
Please enter a prompt in Latin to generate text.
|
20 |
+
"""
|
21 |
+
title= "(L<sup>3</sup>) - Latin Large Language Model"
|
22 |
+
article= "hello world ..."
|
23 |
+
examples= ['Accidere ex una scintilla', 'Audacter calumniare,', 'Consolatium misero comites']
|
24 |
+
logo_image= 'ITSERR_row_logo.png'
|
25 |
+
|
26 |
+
def generate_text(prompt):
|
27 |
+
if torch.cuda.is_available(): device = torch.device("cuda")
|
28 |
+
else:
|
29 |
+
device = torch.device("cpu")
|
30 |
+
print("No GPU available")
|
31 |
+
retutn 'hello world'
|
32 |
+
|
33 |
+
#print("***** Generate *****")
|
34 |
+
#text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device)
|
35 |
+
#generated_text = text_generator(prompt, max_length=50, do_sample=True, temperature=1.0, repetition_penalty=2.0, truncation=True)
|
36 |
+
#return generated_text[0]['generated_text']
|
37 |
+
|
38 |
+
custom_css = """
|
39 |
+
#logo {
|
40 |
+
display: block;
|
41 |
+
margin-left: auto;
|
42 |
+
margin-right: auto;
|
43 |
+
width: 512px;
|
44 |
+
height: 256px;
|
45 |
+
}
|
46 |
+
"""
|
47 |
+
|
48 |
+
with gr.Blocks(css=custom_css) as demo:
|
49 |
+
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
|
50 |
+
|
51 |
+
with gr.Row():
|
52 |
+
with gr.Column():
|
53 |
+
input_text = gr.Textbox(lines=5, placeholder="Enter latin text here...", label="Input Text")
|
54 |
+
with gr.Column():
|
55 |
+
output_text = gr.Textbox(lines=5, placeholder="Output text will appear here...", label="Output Text")
|
56 |
+
|
57 |
+
clean_button = gr.Button("Generate Text")
|
58 |
+
clean_button.click(fn=generate_text, inputs=input_text, outputs=output_text)
|
59 |
+
|
60 |
+
demo.launch(share=True)
|