# gradio app for the LLM model --> use the retr environment # Run the script and open the link in the browser. import os import pandas as pd import datasets import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline # training from scratch with latbert tokenizer CHECKPOINT_PATH= 'scratch_2-nodes_tokenizer_latbert-original_packing_fcocchi/' CHECKPOINT_PATH= 'itserr/scratch_2-nodes_tokenizer_latbert-original_packing_fcocchi' print(f"Loading model from: {CHECKPOINT_PATH}") tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_PATH, token=os.environ['HF_TOKEN_READ']) model = AutoModelForCausalLM.from_pretrained(CHECKPOINT_PATH, token=os.environ['HF_TOKEN_READ']) preference_dataset_name= "itserr/latin_gpt_preferences" global dataset_hf dataset_hf = datasets.load_dataset(preference_dataset_name, token=os.environ['HF_TOKEN_READ'], download_mode='force_redownload') dataset_hf = dataset_hf['train'].to_pandas() print(dataset_hf.shape) description=""" This is a Latin Language Model (LLM) based on GPT-2 and it was trained on a large corpus of Latin texts and can generate text in Latin. \n Demo instructions: - Enter a prompt in Latin in the Input Text box. - Select the temperature value to control the randomness of the generated text (higher value produce a more creative and unstable answer). - Click the 'Generate Text' button to trigger model generation. - (Optional) insert a Feedback text in the box. - Click the 'Like' or 'Dislike' button to judge the generation correctness. """ # (L2) - Latin Language Model title= "LatinGPT" article= "hello world ..." examples= ['Accidere ex una scintilla', 'Audacter calumniare,', 'Consolatium misero comites', 'Errare humanum est,', 'Excusatio non petita,'] logo_image= 'ITSERR_row_logo.png' def generate_text(prompt, slider): if torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") print("No GPU available") print("***** Generate *****") text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device) #generated_text = text_generator(prompt, max_length=100) generated_text = text_generator(prompt, max_length=50, do_sample=True, temperature=slider, repetition_penalty=2.0, truncation=True) return generated_text[0]['generated_text'] # Function to handle user preferences def handle_preference(preference, input, output, feedback, temp_value): """ Format values stored in preferences: - input text - output generated text - user feedback - float temperature value """ # first time staring from a csv file (edited the present one), then work with parquet file # input_text,generated_text,feedback,temperature,like,dislike,count_like,count_dislike global dataset_hf if input == output: output_tuple= ("", "") else: output_tuple= (input, output.split(input)[-1]) if preference == "like": dislike=0 like=1 count_like= dataset_hf.iloc[-1]['count_like'] count_dislike= dataset_hf.iloc[-1]['count_dislike'] if output_tuple[1] != "" : count_like= dataset_hf.iloc[-1]['count_like'] + 1 elif preference == "dislike": dislike=1 like=0 count_like= dataset_hf.iloc[-1]['count_like'] count_dislike= dataset_hf.iloc[-1]['count_dislike'] if output_tuple[1] != "" : count_dislike= dataset_hf.iloc[-1]['count_dislike'] + 1 inp_text= output_tuple[0] out_text= output_tuple[1] new_data = pd.DataFrame({'input_text': inp_text, 'generated_text': out_text, 'feedback': feedback, 'temperature': float(temp_value), 'like': like, 'dislike': dislike, 'count_like': count_like, 'count_dislike': count_dislike}, index=[0]) dataset_hf = pd.concat([dataset_hf, new_data], ignore_index=True) hf_dataset = datasets.Dataset.from_pandas(dataset_hf) dataset_dict = datasets.DatasetDict({"train": hf_dataset}) dataset_dict.push_to_hub(preference_dataset_name, token=os.environ['HF_TOKEN_WRITE']) # print dataset statistics print(f"Admin log: like: {count_like} and dislike: {count_dislike}") return f"You select '{preference}' as answer of the model generation. Thank you for your time!" custom_css = """ #logo { display: block; margin-left: auto; margin-right: auto; width: 280px; height: 140px; } """ with gr.Blocks(css=custom_css) as demo: gr.Image(logo_image, elem_id="logo") gr.Markdown(f"