# Run the script and open the link in the browser. import os import json import gradio as gr import streamlit as st import torch from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline # scratch with latbert tokenizer CHECKPOINT_PATH= 'scratch_2-nodes_tokenizer_latbert-original_packing_fcocchi/' CHECKPOINT_PATH= 'itserr/latin_llm_alpha' print(f"Loading model from: {CHECKPOINT_PATH}") tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_PATH, token=os.environ['HF_TOKEN']) model = AutoModelForCausalLM.from_pretrained(CHECKPOINT_PATH, token=os.environ['HF_TOKEN']) description=""" This is a Latin Language Model (LLM) based on GPT-2 and it was trained on a large corpus of Latin texts and can generate text in Latin. \n Demo instructions: - Enter a prompt in Latin in the Input Text box. - Select the temperature value to control the randomness of the generated text (higher value produce a more creative and unstable answer). - Click the 'Generate Text' button to trigger model generation. - (Optional) insert a Feedback text in the box. - Click the 'Like' or 'Dislike' button to judge the generation correctness. """ title= "(L2) - Latin Language Model" article= "hello world ..." examples= ['Accidere ex una scintilla', 'Audacter calumniare,', 'Consolatium misero comites'] logo_image= 'ITSERR_row_logo.png' def generate_text(prompt, slider): if torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") print("No GPU available") print("***** Generate *****") text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device) #generated_text = text_generator(prompt, max_length=100) generated_text = text_generator(prompt, max_length=50, do_sample=True, temperature=slider, repetition_penalty=2.0, truncation=True) return generated_text[0]['generated_text'] # Function to handle user preferences def handle_preference(preference, input, output, feedback, temp_value, preferences_file="preferences.json"): """ Format values stored in preferences: - input text - output generated text - user feedback - float temperature value """ if os.path.exists(preferences_file): with open(preferences_file, "r") as file: preferences = json.load(file) else: preferences = {"like": [], "dislike": [], "count_like": 0, "count_dislike": 0} if input == output: output_tuple= ("", "", feedback) else: output_tuple= (input, output.split(input)[-1], feedback, temp_value) if preference == "like": preferences["like"].append(output_tuple) if output_tuple[1] != "" : preferences["count_like"] += 1 elif preference == "dislike": preferences["dislike"].append(output_tuple) if output_tuple[1] != "" : preferences["count_dislike"] += 1 with open(preferences_file, "w") as file: json.dump(preferences, file) print(f"Admin log: like: {preferences['count_like']} and dislike: {preferences['count_dislike']}") return f"You select '{preference}' as answer of the model generation. Thank you for your time!" custom_css = """ #logo { display: block; margin-left: auto; margin-right: auto; width: 280px; height: 140px; } """ with gr.Blocks(css=custom_css) as demo: gr.Image(logo_image, elem_id="logo") gr.Markdown(f"