|
'''GoogLeNet with PyTorch.''' |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class Inception(nn.Module): |
|
def __init__(self, in_planes, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes): |
|
super(Inception, self).__init__() |
|
|
|
self.b1 = nn.Sequential( |
|
nn.Conv2d(in_planes, n1x1, kernel_size=1), |
|
nn.BatchNorm2d(n1x1), |
|
nn.ReLU(True), |
|
) |
|
|
|
|
|
self.b2 = nn.Sequential( |
|
nn.Conv2d(in_planes, n3x3red, kernel_size=1), |
|
nn.BatchNorm2d(n3x3red), |
|
nn.ReLU(True), |
|
nn.Conv2d(n3x3red, n3x3, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(n3x3), |
|
nn.ReLU(True), |
|
) |
|
|
|
|
|
self.b3 = nn.Sequential( |
|
nn.Conv2d(in_planes, n5x5red, kernel_size=1), |
|
nn.BatchNorm2d(n5x5red), |
|
nn.ReLU(True), |
|
nn.Conv2d(n5x5red, n5x5, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(n5x5), |
|
nn.ReLU(True), |
|
nn.Conv2d(n5x5, n5x5, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(n5x5), |
|
nn.ReLU(True), |
|
) |
|
|
|
|
|
self.b4 = nn.Sequential( |
|
nn.MaxPool2d(3, stride=1, padding=1), |
|
nn.Conv2d(in_planes, pool_planes, kernel_size=1), |
|
nn.BatchNorm2d(pool_planes), |
|
nn.ReLU(True), |
|
) |
|
|
|
def forward(self, x): |
|
y1 = self.b1(x) |
|
y2 = self.b2(x) |
|
y3 = self.b3(x) |
|
y4 = self.b4(x) |
|
return torch.cat([y1,y2,y3,y4], 1) |
|
|
|
|
|
class GoogLeNet(nn.Module): |
|
def __init__(self): |
|
super(GoogLeNet, self).__init__() |
|
self.pre_layers = nn.Sequential( |
|
nn.Conv2d(3, 192, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(192), |
|
nn.ReLU(True), |
|
) |
|
|
|
self.a3 = Inception(192, 64, 96, 128, 16, 32, 32) |
|
self.b3 = Inception(256, 128, 128, 192, 32, 96, 64) |
|
|
|
self.maxpool = nn.MaxPool2d(3, stride=2, padding=1) |
|
|
|
self.a4 = Inception(480, 192, 96, 208, 16, 48, 64) |
|
self.b4 = Inception(512, 160, 112, 224, 24, 64, 64) |
|
self.c4 = Inception(512, 128, 128, 256, 24, 64, 64) |
|
self.d4 = Inception(512, 112, 144, 288, 32, 64, 64) |
|
self.e4 = Inception(528, 256, 160, 320, 32, 128, 128) |
|
|
|
self.a5 = Inception(832, 256, 160, 320, 32, 128, 128) |
|
self.b5 = Inception(832, 384, 192, 384, 48, 128, 128) |
|
|
|
self.avgpool = nn.AvgPool2d(8, stride=1) |
|
self.linear = nn.Linear(1024, 10) |
|
|
|
def forward(self, x): |
|
out = self.pre_layers(x) |
|
out = self.a3(out) |
|
out = self.b3(out) |
|
out = self.maxpool(out) |
|
out = self.a4(out) |
|
out = self.b4(out) |
|
out = self.c4(out) |
|
out = self.d4(out) |
|
out = self.e4(out) |
|
out = self.maxpool(out) |
|
out = self.a5(out) |
|
out = self.b5(out) |
|
out = self.avgpool(out) |
|
out = out.view(out.size(0), -1) |
|
out = self.linear(out) |
|
return out |
|
|
|
|
|
def test(): |
|
net = GoogLeNet() |
|
x = torch.randn(1,3,32,32) |
|
y = net(x) |
|
print(y.size()) |
|
|
|
|
|
|