|
'''MobileNetV2 in PyTorch. |
|
|
|
See the paper "Inverted Residuals and Linear Bottlenecks: |
|
Mobile Networks for Classification, Detection and Segmentation" for more details. |
|
''' |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class Block(nn.Module): |
|
'''expand + depthwise + pointwise''' |
|
def __init__(self, in_planes, out_planes, expansion, stride): |
|
super(Block, self).__init__() |
|
self.stride = stride |
|
|
|
planes = expansion * in_planes |
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, stride=1, padding=0, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, groups=planes, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.conv3 = nn.Conv2d(planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False) |
|
self.bn3 = nn.BatchNorm2d(out_planes) |
|
|
|
self.shortcut = nn.Sequential() |
|
if stride == 1 and in_planes != out_planes: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False), |
|
nn.BatchNorm2d(out_planes), |
|
) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = F.relu(self.bn2(self.conv2(out))) |
|
out = self.bn3(self.conv3(out)) |
|
out = out + self.shortcut(x) if self.stride==1 else out |
|
return out |
|
|
|
|
|
class MobileNetV2(nn.Module): |
|
|
|
cfg = [(1, 16, 1, 1), |
|
(6, 24, 2, 1), |
|
(6, 32, 3, 2), |
|
(6, 64, 4, 2), |
|
(6, 96, 3, 1), |
|
(6, 160, 3, 2), |
|
(6, 320, 1, 1)] |
|
|
|
def __init__(self, num_classes=10): |
|
super(MobileNetV2, self).__init__() |
|
|
|
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(32) |
|
self.layers = self._make_layers(in_planes=32) |
|
self.conv2 = nn.Conv2d(320, 1280, kernel_size=1, stride=1, padding=0, bias=False) |
|
self.bn2 = nn.BatchNorm2d(1280) |
|
self.linear = nn.Linear(1280, num_classes) |
|
|
|
def _make_layers(self, in_planes): |
|
layers = [] |
|
for expansion, out_planes, num_blocks, stride in self.cfg: |
|
strides = [stride] + [1]*(num_blocks-1) |
|
for stride in strides: |
|
layers.append(Block(in_planes, out_planes, expansion, stride)) |
|
in_planes = out_planes |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = self.layers(out) |
|
out = F.relu(self.bn2(self.conv2(out))) |
|
|
|
out = F.avg_pool2d(out, 4) |
|
out = out.view(out.size(0), -1) |
|
out = self.linear(out) |
|
return out |
|
|
|
|
|
def test(): |
|
net = MobileNetV2() |
|
x = torch.randn(2,3,32,32) |
|
y = net(x) |
|
print(y.size()) |
|
|
|
|
|
|