'''ShuffleNet in PyTorch. See the paper "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices" for more details. ''' import torch import torch.nn as nn import torch.nn.functional as F class ShuffleBlock(nn.Module): def __init__(self, groups): super(ShuffleBlock, self).__init__() self.groups = groups def forward(self, x): '''Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W]''' N,C,H,W = x.size() g = self.groups return x.view(N,g,C//g,H,W).permute(0,2,1,3,4).reshape(N,C,H,W) class Bottleneck(nn.Module): def __init__(self, in_planes, out_planes, stride, groups): super(Bottleneck, self).__init__() self.stride = stride mid_planes = out_planes/4 g = 1 if in_planes==24 else groups self.conv1 = nn.Conv2d(in_planes, mid_planes, kernel_size=1, groups=g, bias=False) self.bn1 = nn.BatchNorm2d(mid_planes) self.shuffle1 = ShuffleBlock(groups=g) self.conv2 = nn.Conv2d(mid_planes, mid_planes, kernel_size=3, stride=stride, padding=1, groups=mid_planes, bias=False) self.bn2 = nn.BatchNorm2d(mid_planes) self.conv3 = nn.Conv2d(mid_planes, out_planes, kernel_size=1, groups=groups, bias=False) self.bn3 = nn.BatchNorm2d(out_planes) self.shortcut = nn.Sequential() if stride == 2: self.shortcut = nn.Sequential(nn.AvgPool2d(3, stride=2, padding=1)) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.shuffle1(out) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) res = self.shortcut(x) out = F.relu(torch.cat([out,res], 1)) if self.stride==2 else F.relu(out+res) return out class ShuffleNet(nn.Module): def __init__(self, cfg): super(ShuffleNet, self).__init__() out_planes = cfg['out_planes'] num_blocks = cfg['num_blocks'] groups = cfg['groups'] self.conv1 = nn.Conv2d(3, 24, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(24) self.in_planes = 24 self.layer1 = self._make_layer(out_planes[0], num_blocks[0], groups) self.layer2 = self._make_layer(out_planes[1], num_blocks[1], groups) self.layer3 = self._make_layer(out_planes[2], num_blocks[2], groups) self.linear = nn.Linear(out_planes[2], 10) def _make_layer(self, out_planes, num_blocks, groups): layers = [] for i in range(num_blocks): stride = 2 if i == 0 else 1 cat_planes = self.in_planes if i == 0 else 0 layers.append(Bottleneck(self.in_planes, out_planes-cat_planes, stride=stride, groups=groups)) self.in_planes = out_planes return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def ShuffleNetG2(): cfg = { 'out_planes': [200,400,800], 'num_blocks': [4,8,4], 'groups': 2 } return ShuffleNet(cfg) def ShuffleNetG3(): cfg = { 'out_planes': [240,480,960], 'num_blocks': [4,8,4], 'groups': 3 } return ShuffleNet(cfg) def test(): net = ShuffleNetG2() x = torch.randn(1,3,32,32) y = net(x) print(y) # test()