File size: 9,508 Bytes
91d7875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import os
import time
from pathlib import Path
from textwrap import dedent
from types import SimpleNamespace

import gradio as gr
from charset_normalizer import detect
from chromadb.config import Settings
from epub2txt import epub2txt
from langchain.chains import RetrievalQA
from langchain.docstore.document import Document
from langchain.document_loaders import (
    CSVLoader,
    Docx2txtLoader,
    PDFMinerLoader,
    TextLoader,
)

# from constants import CHROMA_SETTINGS, SOURCE_DIRECTORY, PERSIST_DIRECTORY
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.llms import HuggingFacePipeline
from langchain.text_splitter import (
    RecursiveCharacterTextSplitter,
)
import torch

# FAISS instead of PineCone
from langchain.vectorstores import  Chroma
from loguru import logger
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import argparse

parser = argparse.ArgumentParser('LocalGPT falcon', add_help=False)
parser.add_argument('--device_type', type=str, default="cuda", choices=["cpu", "mps", "cuda"], help='device type', )
args = parser.parse_args()


ROOT_DIRECTORY = Path(__file__).parent
PERSIST_DIRECTORY = f"{ROOT_DIRECTORY}/db"

# Define the Chroma settings
CHROMA_SETTINGS = Settings(
    chroma_db_impl="duckdb+parquet",
    persist_directory=PERSIST_DIRECTORY,
    anonymized_telemetry=False,
)
ns = SimpleNamespace(qa=None)

# INSTRUCTORS_EMBEDDINGS_MODEL = "hkunlp/instructor-xl"
INSTRUCTORS_EMBEDDINGS_MODEL = "hkunlp/instructor-large"
# INSTRUCTORS_EMBEDDINGS_MODEL = "hkunlp/instructor-large"
# INSTRUCTORS_EMBEDDINGS_MODEL = "hkunlp/instructor-base"

def load_single_document(file_path: str or Path) -> Document:
    """ingest.py"""
    # Loads a single document from a file path
    # encoding = detect(open(file_path, "rb").read()).get("encoding", "utf-8")
    encoding = detect(Path(file_path).read_bytes()).get("encoding", "utf-8")
    if file_path.endswith(".txt"):
        if encoding is None:
            logger.warning(
                f" {file_path}'s encoding is None "
                "Something is fishy, return empty str "
            )
            return Document(page_content="", metadata={"source": file_path})

        try:
            loader = TextLoader(file_path, encoding=encoding)
        except Exception as exc:
            logger.warning(f" {exc}, return dummy ")
            return Document(page_content="", metadata={"source": file_path})

    elif file_path.endswith(".pdf"):
        loader = PDFMinerLoader(file_path)
    elif file_path.endswith(".csv"):
        loader = CSVLoader(file_path)
    elif Path(file_path).suffix in [".docx"]:
        try:
            loader = Docx2txtLoader(file_path)
        except Exception as exc:
            logger.error(f" {file_path} errors: {exc}")
            return Document(page_content="", metadata={"source": file_path})
    elif Path(file_path).suffix in [".epub"]:  # for epub? epub2txt unstructured
        try:
            _ = epub2txt(file_path)
        except Exception as exc:
            logger.error(f" {file_path} errors: {exc}")
            return Document(page_content="", metadata={"source": file_path})
        return Document(page_content=_, metadata={"source": file_path})
    else:
        if encoding is None:
            logger.warning(
                f" {file_path}'s encoding is None "
                "Likely binary files, return empty str "
            )
            return Document(page_content="", metadata={"source": file_path})
        try:
            loader = TextLoader(file_path)
        except Exception as exc:
            logger.error(f" {exc}, returnning empty string")
            return Document(page_content="", metadata={"source": file_path})

    return loader.load()[0]

def greet(name):
    """Test."""
    logger.debug(f" name: [{name}] ")
    return "Hello " + name + "!!"


def upload_files(files):
    """Upload files."""
    try:
        file_paths = [file.name for file in files]
    except:
        file_paths = [files]
    logger.info(file_paths)

    res = ingest(file_paths)
    logger.info("Processed:\n{res}")
    del res

    ns.qa = load_qa()

    return file_paths


def ingest(
    file_paths: list
):
    """Gen Chroma db.
    torch.cuda.is_available()
    file_paths =
    []
    """
    logger.info("Doing ingest...")

    documents = []
    for file_path in file_paths:
        documents.append(load_single_document(f"{file_path}"))

    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    texts = text_splitter.split_documents(documents)

    logger.info(f"Loaded {len(documents)} documents ")
    logger.info(f"Split into {len(texts)} chunks of text")

    # Create embeddings
    logger.info(f"Load InstructEmbeddings model: {INSTRUCTORS_EMBEDDINGS_MODEL}")
    embeddings = HuggingFaceInstructEmbeddings(
        model_name=INSTRUCTORS_EMBEDDINGS_MODEL, model_kwargs={"device": args.device_type}
    )

    db = Chroma.from_documents(
        texts,
        embeddings,
        persist_directory=PERSIST_DIRECTORY,
        client_settings=CHROMA_SETTINGS,
    )
    db.persist()
    db = None
    logger.info("Done ingest")

    return [
        [Path(doc.metadata.get("source")).name, len(doc.page_content)]
        for doc in documents
    ]


# https://huggingface.co/tiiuae/falcon-7b-instruct
def gen_local_llm():
    """Gen a local llm.
    localgpt run_localgpt
    """
    model = "tiiuae/falcon-7b-instruct"

    if args.device_type == "cuda":
        tokenizer = AutoTokenizer.from_pretrained(model)
    else: # cpu
        tokenizer=AutoTokenizer.from_pretrained(model)
        model=AutoModelForCausalLM.from_pretrained(model, trust_remote_code=True)
    
    pipe = pipeline(
        "text-generation",
        model=model,
        tokenizer=tokenizer,
        torch_dtype=torch.float32 if args.device_type =="cpu" else torch.bfloat16,
        trust_remote_code=True,
        device_map="cpu" if args.device_type =="cpu" else "auto",
        max_length=2048,
        temperature=0,
        top_p=0.95,
        top_k=10,
        repetition_penalty=1.15,
        num_return_sequences=1,
        pad_token_id=tokenizer.eos_token_id
    )

    local_llm = HuggingFacePipeline(pipeline=pipe)

    return local_llm


def load_qa():
    """Gen qa."""
    logger.info("Doing qa")

    embeddings = HuggingFaceInstructEmbeddings(
        model_name=INSTRUCTORS_EMBEDDINGS_MODEL, model_kwargs={"device": args.device_type}
    )
    # xl 4.96G, large 3.5G,
    db = Chroma(
        persist_directory=PERSIST_DIRECTORY,
        embedding_function=embeddings,
        client_settings=CHROMA_SETTINGS,
    )
    retriever = db.as_retriever()

    llm = gen_local_llm()  # "tiiuae/falcon-7b-instruct"

    qa = RetrievalQA.from_chain_type(
        llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True
    )

    logger.info("Done qa")

    return qa


def main1():
    """Lump codes"""
    with gr.Blocks() as demo:
        iface = gr.Interface(fn=greet, inputs="text", outputs="text")
        iface.launch()

    demo.launch()


def main():
    """Do blocks."""
    logger.info(f"ROOT_DIRECTORY: {ROOT_DIRECTORY}")

    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        with gr.Accordion("Info", open=False):
            _ = """
                Talk to your docs (.pdf, .docx, .csv, .txt .md). It
                takes quite a while to ingest docs (10-30 min. depending
                on net, RAM, CPU etc.).
                """
            gr.Markdown(dedent(_))
        title = """
            <div style="text-align: center;">
                <h1>LocalGPT with Falcon</h1>
                <p style="text-align: center;">Upload your docs (.pdf, .docx, .csv, .txt .md) by clicking the "Load docs to LangChain" and wait until the upload is complete, <br />
                when everything is ready, you can start asking questions about the docs <br />
            </div>
        """
        gr.HTML(title)
        with gr.Tab("Upload files"):
            # Upload files and generate embeddings database
            file_output = gr.File()
            upload_button = gr.UploadButton(
                "Load docs to LangChain",
                file_count="multiple",
            )
            upload_button.upload(upload_files, upload_button, file_output)

            chatbot = gr.Chatbot()
            msg = gr.Textbox(label="Query")
            clear = gr.Button("Clear")

            def respond(message, chat_history):
                if ns.qa is None:  # no files processed yet
                    bot_message = "Provide some file(s) for processsing first."
                    chat_history.append((message, bot_message))
                    return "", chat_history
                try:
                    res = ns.qa(message)
                    answer, docs = res["result"], res["source_documents"]
                    bot_message = f"{answer}"
                except Exception as exc:
                    logger.error(exc)
                    bot_message = f"bummer! {exc}"

                chat_history.append((message, bot_message))

                return "", chat_history

            msg.submit(respond, [msg, chatbot], [msg, chatbot])
            clear.click(lambda: None, None, chatbot, queue=False)

    try:
        from google import colab

        share = True  # start share when in colab
    except Exception:
        share = False

    demo.launch(share=share)


if __name__ == "__main__":
    main()