Spaces:
Sleeping
Sleeping
File size: 9,508 Bytes
91d7875 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import os
import time
from pathlib import Path
from textwrap import dedent
from types import SimpleNamespace
import gradio as gr
from charset_normalizer import detect
from chromadb.config import Settings
from epub2txt import epub2txt
from langchain.chains import RetrievalQA
from langchain.docstore.document import Document
from langchain.document_loaders import (
CSVLoader,
Docx2txtLoader,
PDFMinerLoader,
TextLoader,
)
# from constants import CHROMA_SETTINGS, SOURCE_DIRECTORY, PERSIST_DIRECTORY
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.llms import HuggingFacePipeline
from langchain.text_splitter import (
RecursiveCharacterTextSplitter,
)
import torch
# FAISS instead of PineCone
from langchain.vectorstores import Chroma
from loguru import logger
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import argparse
parser = argparse.ArgumentParser('LocalGPT falcon', add_help=False)
parser.add_argument('--device_type', type=str, default="cuda", choices=["cpu", "mps", "cuda"], help='device type', )
args = parser.parse_args()
ROOT_DIRECTORY = Path(__file__).parent
PERSIST_DIRECTORY = f"{ROOT_DIRECTORY}/db"
# Define the Chroma settings
CHROMA_SETTINGS = Settings(
chroma_db_impl="duckdb+parquet",
persist_directory=PERSIST_DIRECTORY,
anonymized_telemetry=False,
)
ns = SimpleNamespace(qa=None)
# INSTRUCTORS_EMBEDDINGS_MODEL = "hkunlp/instructor-xl"
INSTRUCTORS_EMBEDDINGS_MODEL = "hkunlp/instructor-large"
# INSTRUCTORS_EMBEDDINGS_MODEL = "hkunlp/instructor-large"
# INSTRUCTORS_EMBEDDINGS_MODEL = "hkunlp/instructor-base"
def load_single_document(file_path: str or Path) -> Document:
"""ingest.py"""
# Loads a single document from a file path
# encoding = detect(open(file_path, "rb").read()).get("encoding", "utf-8")
encoding = detect(Path(file_path).read_bytes()).get("encoding", "utf-8")
if file_path.endswith(".txt"):
if encoding is None:
logger.warning(
f" {file_path}'s encoding is None "
"Something is fishy, return empty str "
)
return Document(page_content="", metadata={"source": file_path})
try:
loader = TextLoader(file_path, encoding=encoding)
except Exception as exc:
logger.warning(f" {exc}, return dummy ")
return Document(page_content="", metadata={"source": file_path})
elif file_path.endswith(".pdf"):
loader = PDFMinerLoader(file_path)
elif file_path.endswith(".csv"):
loader = CSVLoader(file_path)
elif Path(file_path).suffix in [".docx"]:
try:
loader = Docx2txtLoader(file_path)
except Exception as exc:
logger.error(f" {file_path} errors: {exc}")
return Document(page_content="", metadata={"source": file_path})
elif Path(file_path).suffix in [".epub"]: # for epub? epub2txt unstructured
try:
_ = epub2txt(file_path)
except Exception as exc:
logger.error(f" {file_path} errors: {exc}")
return Document(page_content="", metadata={"source": file_path})
return Document(page_content=_, metadata={"source": file_path})
else:
if encoding is None:
logger.warning(
f" {file_path}'s encoding is None "
"Likely binary files, return empty str "
)
return Document(page_content="", metadata={"source": file_path})
try:
loader = TextLoader(file_path)
except Exception as exc:
logger.error(f" {exc}, returnning empty string")
return Document(page_content="", metadata={"source": file_path})
return loader.load()[0]
def greet(name):
"""Test."""
logger.debug(f" name: [{name}] ")
return "Hello " + name + "!!"
def upload_files(files):
"""Upload files."""
try:
file_paths = [file.name for file in files]
except:
file_paths = [files]
logger.info(file_paths)
res = ingest(file_paths)
logger.info("Processed:\n{res}")
del res
ns.qa = load_qa()
return file_paths
def ingest(
file_paths: list
):
"""Gen Chroma db.
torch.cuda.is_available()
file_paths =
[]
"""
logger.info("Doing ingest...")
documents = []
for file_path in file_paths:
documents.append(load_single_document(f"{file_path}"))
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(documents)
logger.info(f"Loaded {len(documents)} documents ")
logger.info(f"Split into {len(texts)} chunks of text")
# Create embeddings
logger.info(f"Load InstructEmbeddings model: {INSTRUCTORS_EMBEDDINGS_MODEL}")
embeddings = HuggingFaceInstructEmbeddings(
model_name=INSTRUCTORS_EMBEDDINGS_MODEL, model_kwargs={"device": args.device_type}
)
db = Chroma.from_documents(
texts,
embeddings,
persist_directory=PERSIST_DIRECTORY,
client_settings=CHROMA_SETTINGS,
)
db.persist()
db = None
logger.info("Done ingest")
return [
[Path(doc.metadata.get("source")).name, len(doc.page_content)]
for doc in documents
]
# https://huggingface.co/tiiuae/falcon-7b-instruct
def gen_local_llm():
"""Gen a local llm.
localgpt run_localgpt
"""
model = "tiiuae/falcon-7b-instruct"
if args.device_type == "cuda":
tokenizer = AutoTokenizer.from_pretrained(model)
else: # cpu
tokenizer=AutoTokenizer.from_pretrained(model)
model=AutoModelForCausalLM.from_pretrained(model, trust_remote_code=True)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.float32 if args.device_type =="cpu" else torch.bfloat16,
trust_remote_code=True,
device_map="cpu" if args.device_type =="cpu" else "auto",
max_length=2048,
temperature=0,
top_p=0.95,
top_k=10,
repetition_penalty=1.15,
num_return_sequences=1,
pad_token_id=tokenizer.eos_token_id
)
local_llm = HuggingFacePipeline(pipeline=pipe)
return local_llm
def load_qa():
"""Gen qa."""
logger.info("Doing qa")
embeddings = HuggingFaceInstructEmbeddings(
model_name=INSTRUCTORS_EMBEDDINGS_MODEL, model_kwargs={"device": args.device_type}
)
# xl 4.96G, large 3.5G,
db = Chroma(
persist_directory=PERSIST_DIRECTORY,
embedding_function=embeddings,
client_settings=CHROMA_SETTINGS,
)
retriever = db.as_retriever()
llm = gen_local_llm() # "tiiuae/falcon-7b-instruct"
qa = RetrievalQA.from_chain_type(
llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True
)
logger.info("Done qa")
return qa
def main1():
"""Lump codes"""
with gr.Blocks() as demo:
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()
demo.launch()
def main():
"""Do blocks."""
logger.info(f"ROOT_DIRECTORY: {ROOT_DIRECTORY}")
with gr.Blocks(theme=gr.themes.Soft()) as demo:
with gr.Accordion("Info", open=False):
_ = """
Talk to your docs (.pdf, .docx, .csv, .txt .md). It
takes quite a while to ingest docs (10-30 min. depending
on net, RAM, CPU etc.).
"""
gr.Markdown(dedent(_))
title = """
<div style="text-align: center;">
<h1>LocalGPT with Falcon</h1>
<p style="text-align: center;">Upload your docs (.pdf, .docx, .csv, .txt .md) by clicking the "Load docs to LangChain" and wait until the upload is complete, <br />
when everything is ready, you can start asking questions about the docs <br />
</div>
"""
gr.HTML(title)
with gr.Tab("Upload files"):
# Upload files and generate embeddings database
file_output = gr.File()
upload_button = gr.UploadButton(
"Load docs to LangChain",
file_count="multiple",
)
upload_button.upload(upload_files, upload_button, file_output)
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Query")
clear = gr.Button("Clear")
def respond(message, chat_history):
if ns.qa is None: # no files processed yet
bot_message = "Provide some file(s) for processsing first."
chat_history.append((message, bot_message))
return "", chat_history
try:
res = ns.qa(message)
answer, docs = res["result"], res["source_documents"]
bot_message = f"{answer}"
except Exception as exc:
logger.error(exc)
bot_message = f"bummer! {exc}"
chat_history.append((message, bot_message))
return "", chat_history
msg.submit(respond, [msg, chatbot], [msg, chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
try:
from google import colab
share = True # start share when in colab
except Exception:
share = False
demo.launch(share=share)
if __name__ == "__main__":
main()
|